Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

BiochemtechIPM
Alphascents
Pherobio
InsectScience
E-Econex
Semiochemical
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractGas- and Particle-Phase Products and Their Mechanisms of Formation from the Reaction of Delta-3-Carene with NO(3) Radicals    Next AbstractDerivation and application of indoor air screening values for inhalation exposure to semi-volatile organic compounds »

J Phys Chem A


Title:Chemistry of Secondary Organic Aerosol Formation from Reactions of Monoterpenes with OH Radicals in the Presence of NO(x)
Author(s):DeVault MP; Ziola AC; Ziemann PJ;
Address:"Department of Chemistry, University of Colorado, Boulder, Colorado80309, United States. Cooperative Institute for Research in Environmental Sciences (CIRES), Boulder, Colorado80309, United States"
Journal Title:J Phys Chem A
Year:2022
Volume:20221017
Issue:42
Page Number:7719 - 7736
DOI: 10.1021/acs.jpca.2c04605
ISSN/ISBN:1520-5215 (Electronic) 1089-5639 (Linking)
Abstract:"The oxidation of volatile organic compounds (VOCs), which are emitted to the atmosphere from natural and anthropogenic sources, leads to the formation of ozone and secondary organic aerosol (SOA) particles that impact air quality and climate. In the study reported here, we investigated the products of the reactions of five biogenic monoterpenes with OH radicals (an important daytime oxidant) under conditions that mimic the chemistry that occurs in polluted air, and developed mechanisms to explain their formation. Experiments were conducted in an environmental chamber, and information on the identity of gas-phase molecular products was obtained using online mass spectrometry, while liquid chromatography and two methods of functional group analysis were used to characterize the SOA composition. The gas-phase products of the reactions were similar to those formed in our previous studies of the reactions of these monoterpenes with NO(3) radicals (an important nighttime oxidant), in that they all contained various combinations of nitrate, carbonyl, hydroxyl, ester, and ether groups. But in spite of this, less SOA was formed in OH/NO(x) reactions and it was composed of monomers, while SOA formed in NO(3) radical reactions consisted of acetal and hemiacetal oligomers formed by particle-phase accretion reactions. In addition, it appeared that some monomers underwent particle-phase hydrolysis, whereas oligomers did not. These differences are due primarily to the arrangement of hydroxyl, carbonyl, nitrate, and ether groups in the monomers, which can in turn be explained by differences in OH and NO(3) radical reaction mechanisms. The results provide insight into the impact of VOC structure on the amount and composition of SOA formed by atmospheric oxidation, which influence important aerosol properties such as volatility and hygroscopicity"
Keywords:Monoterpenes/chemistry *Volatile Organic Compounds/chemistry Nitrates/chemistry Acetals Aerosols/chemistry *Ozone/chemistry Hydroxyl Radical/chemistry Oxidants Esters *Air Pollutants/chemistry;
Notes:"MedlineDeVault, Marla P Ziola, Anna C Ziemann, Paul J eng 2022/10/18 J Phys Chem A. 2022 Oct 27; 126(42):7719-7736. doi: 10.1021/acs.jpca.2c04605. Epub 2022 Oct 17"

 
Back to top
 
Citation: El-Sayed AM 2025. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2025 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 27-01-2025