Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractPerching mate-locating strategy in Paysandisia archon (Lepidoptera: Castniidae): behavioral and morpho-physiological investigations    Next AbstractSampling methods for the study of volatile profile of PDO wine vinegars. A comparison using multivariate data analysis »

Molecules


Title:Why Do These Yeasts Smell So Good? Volatile Organic Compounds (VOCs) Produced by Malassezia Species in the Exponential and Stationary Growth Phases
Author(s):Rios-Navarro A; Gonzalez M; Carazzone C; Celis Ramirez AM;
Address:"Grupo de Investigacion Celular y Molecular de Microorganismos Patogenos (CeMoP), Universidad de los Andes, Cra 1 No. 18A-12, Bogota 111711, Cundinamarca, Colombia. Laboratory of Advanced Analytical Techniques in Natural Products (LATNAP), Universidad de los Andes, Cra 1 No. 18A-12, Bogota 111711, Cundinamarca, Colombia"
Journal Title:Molecules
Year:2023
Volume:20230314
Issue:6
Page Number: -
DOI: 10.3390/molecules28062620
ISSN/ISBN:1420-3049 (Electronic) 1420-3049 (Linking)
Abstract:"Malassezia synthesizes and releases volatile organic compounds (VOCs), small molecules that allow them to carry out interaction processes. These lipid-dependent yeasts belong to the human skin mycobiota and are related to dermatological diseases. However, knowledge about VOC production and its function is lacking. This study aimed to determine the volatile profiles of Malassezia globosa, Malassezia restricta, and Malassezia sympodialis in the exponential and stationary growth phases. The compounds were separated and characterized in each growth phase through headspace solid-phase microextraction (HS-SPME) and gas chromatography-mass spectrometry (GC-MS). We found a total of 54 compounds, 40 annotated. Most of the compounds identified belong to alcohols and polyols, fatty alcohols, alkanes, and unsaturated aliphatic hydrocarbons. Unsupervised and supervised statistical multivariate analyses demonstrated that the volatile profiles of Malassezia differed between species and growth phases, with M. globosa being the species with the highest quantity of VOCs. Some Malassezia volatiles, such as butan-1-ol, 2-methylbutan-1-ol, 3-methylbutan-1-ol, and 2-methylpropan-1-ol, associated with biological interactions were also detected. All three species show at least one unique compound, suggesting a unique metabolism. The ecological functions of the compounds detected in each species and growth phase remain to be studied. They could interact with other microorganisms or be an important clue in understanding the pathogenic role of these yeasts"
Keywords:Humans *Malassezia *Volatile Organic Compounds/analysis Smell Yeasts/metabolism Skin/chemistry Alcohols/analysis Solid Phase Microextraction M.globosa M.restricta M.sympodialis Malassezia volatile profile biological interaction growth phase lipid-depen;
Notes:"MedlineRios-Navarro, Andrea Gonzalez, Mabel Carazzone, Chiara Celis Ramirez, Adriana Marcela eng INV-2018-31-1252/Universidad de Los Andes/ Switzerland 2023/03/30 Molecules. 2023 Mar 14; 28(6):2620. doi: 10.3390/molecules28062620"

 
Back to top
 
Citation: El-Sayed AM 2025. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2025 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 13-01-2025