Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous Abstract"Species Composition, Temporal Abundance and Distribution of Insect Captures Inside and Outside Commercial Peanut Shelling Facilities"    Next AbstractSea breeze modulated volatilization of polycyclic aromatic hydrocarbons from the Masnou Harbor (NW Mediterranean Sea) »

N Biotechnol


Title:Removal of 2-butoxyethanol gaseous emissions by biotrickling filtration packed with polyurethane foam
Author(s):Perez MC; Alvarez-Hornos FJ; Engesser KH; Dobslaw D; Gabaldon C;
Address:"Research Group GI(2)AM, Department of Chemical Engineering, Universitat de Valencia, Av. de la Universitat s/n, 46100 Burjassot, Spain. Research Group ALR, Department of Biological Waste Air Purification, Institute of Sanitary Engineering, Water Quality and Solid Waste Management, University of Stuttgart, Bandtale 2, 70569 Stuttgart, Germany. Research Group GI(2)AM, Department of Chemical Engineering, Universitat de Valencia, Av. de la Universitat s/n, 46100 Burjassot, Spain. Electronic address: Carmen.Gabaldon@uv.es"
Journal Title:N Biotechnol
Year:2016
Volume:20151117
Issue:2
Page Number:263 - 272
DOI: 10.1016/j.nbt.2015.11.006
ISSN/ISBN:1876-4347 (Electronic) 1871-6784 (Linking)
Abstract:"The removal of 2-butoxyethanol from gaseous emissions was studied using two biotrickling filters (BTF1 and BTF2) packed with polyurethane foam. Two different inoculum sources were used: a pure culture of Pseudomonas sp. BOE200 (BTF1) and activated sludge from a municipal wastewater treatment plant (BTF2). The bioreactors were operated at inlet loads (ILs) of 130 and 195 g m(-3) hour(-1) and at an empty bed residence time (EBRT) of 12.5s. Under an IL of approximately 130 g m(-3) hour(-1), BTF1 presented higher elimination capacities (ECs) than BTF2, with average values of 106+/-7 and 68+/-8 g m(-3) hour(-1), respectively. However, differences in ECs between BTFs were decreased by reducing the irrigation intervals from 1 min every 12 min to 1 min every 2 hours in BTF2. Average values of EC were 111+/-25 and 90+/-7 g m(-3) hour(-1) for BTF1 and BTF2, respectively, when working at an IL of approximately 195 g m(-3) hour(-1). Microbial analysis revealed a significant shift in the microbial community of BTF1 inoculated with Pseudomonas sp. BOE200. At the end of the experiment, the species Microbacterium sp., Chryseobacterium sp., Acinetobacter sp., Pseudomonas sp. and Mycobacterium sp. were detected. In BTF2 inoculated with activated sludge, the denaturing gradient gel electrophoresis (DGGE) technique showed a diverse microbial community including species that was able to use 2-butoxyethanol as its carbon source, such as Pseudomonas aeruginosa and Pseudomonas putida as representative species. Although BTF1 inoculated with Pseudomonas sp. BOE200 and higher gas velocity (probably greater gas/liquid mass transfer rate) showed a slight improvement in performance, the use of activated sludge as inoculum seems to be a more feasible option for the industrial application of this technology"
Keywords:"*Air Filters/microbiology Air Pollution/prevention & control Biodegradation, Environmental Bioreactors/microbiology Ethylene Glycols/*isolation & purification/metabolism Filtration/*instrumentation Polyurethanes/chemistry Pseudomonas putida/metabolism Sew;"
Notes:"MedlinePerez, M C Alvarez-Hornos, F J Engesser, K H Dobslaw, D Gabaldon, C eng Evaluation Study Research Support, Non-U.S. Gov't Netherlands 2015/11/26 N Biotechnol. 2016 Mar 25; 33(2):263-72. doi: 10.1016/j.nbt.2015.11.006. Epub 2015 Nov 17"

 
Back to top
 
Citation: El-Sayed AM 2025. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2025 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 10-01-2025