Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractExtending landscape of volatile metabolites as novel diagnostic biomarkers of inflammatory bowel disease - a review    Next Abstract"Application of Metal-Organic Frameworks in Adsorptive Removal of Organic Contaminants from Water, Fuel and Air" »

Aliment Pharmacol Ther


Title:Investigation of faecal volatile organic metabolites as novel diagnostic biomarkers in inflammatory bowel disease
Author(s):Ahmed I; Greenwood R; Costello B; Ratcliffe N; Probert CS;
Address:"Department of Gastroenterology, University Hospital Southampton, Southampton, UK. Department of Research and Development, Bristol Royal Infirmary, Bristol, UK. Institute of Biosensing Technology, University of the West of England, Bristol, UK. Gastroenterology Research Unit, Institute of Translational Medicine, University of Liverpool, Liverpool, UK"
Journal Title:Aliment Pharmacol Ther
Year:2016
Volume:20160125
Issue:5
Page Number:596 - 611
DOI: 10.1111/apt.13522
ISSN/ISBN:1365-2036 (Electronic) 0269-2813 (Linking)
Abstract:"BACKGROUND: The aetiology of inflammatory bowel disease (IBD) remains poorly understood. Recent evidence suggests an important role of gut microbial dysbiosis in IBD, and this may be associated with changes in faecal volatile organic metabolites (VOMs). AIM: To describe the changes in the faecal VOMs of patients with IBD and establish their diagnostic potential as non-invasive biomarkers. METHODS: Faecal samples were obtained from 117 people with Crohn's disease (CD), 100 with ulcerative colitis (UC), and 109 healthy controls. Faecal VOMs were extracted using solid-phase micro-extraction and analysed by gas chromatography mass spectrometry. Data analysis was carried out using partial least squares-discriminate analysis (PLS-DA) to determine class membership based on distinct metabolomic profiles. RESULTS: The PLS-DA model showed clear separation of active CD from inactive disease and healthy controls (P < 0.001). Heptanal, 1-octen-3-ol, 2-piperidinone and 6-methyl-2-heptanone were up-regulated in the active CD group [variable important in projection (VIP) score 2.8, 2.7, 2.6 and 2.4, respectively], while methanethiol, 3-methyl-phenol, short-chain fatty acids and ester derivatives were found to be less abundant (VIP score of 3.5, 2.6, 1.5 and 1.2, respectively). The PLS-DA model also separated patients with small bowel CD from healthy controls and those with colonic CD from UC (P < 0.001). In contrast, less distinct separation was observed between active UC, inactive UC and healthy controls. CONCLUSIONS: Analysis of faecal volatile organic metabolites can provide an understanding of gut metabolomic changes in IBD. It has the potential to provide a non-invasive means of diagnosing IBD, and can differentiate between UC and CD"
Keywords:"Adult Biomarkers Case-Control Studies Colitis, Ulcerative/*diagnosis Crohn Disease/*diagnosis Feces/*chemistry Female Gas Chromatography-Mass Spectrometry Humans Male Middle Aged Volatile Organic Compounds/*pharmacokinetics;"
Notes:"MedlineAhmed, I Greenwood, R Costello, B Ratcliffe, N Probert, C S eng England 2016/01/26 Aliment Pharmacol Ther. 2016 Mar; 43(5):596-611. doi: 10.1111/apt.13522. Epub 2016 Jan 25"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 26-12-2024