Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractBehavioral and Biological Effects of Exposure to Tuta absoluta (Lepidoptera: Gelechiidae) Sex Pheromone on Several Trichogramma (Hymenoptera: Trichogrammatidae) Populations    Next AbstractExposure to Dimethyl Selenide (DMSe)-Derived Secondary Organic Aerosol Alters Transcriptomic Profiles in Human Airway Epithelial Cells »

J Vis Exp


Title:An In Vitro Batch-culture Model to Estimate the Effects of Interventional Regimens on Human Fecal Microbiota
Author(s):Ahmadi S; Wang S; Nagpal R; Mainali R; Soleimanian-Zad S; Kitzman D; Yadav H;
Address:"Department of Internal Medicine- Molecular Medicine, Wake Forest School of Medicine; Department of Microbiology and Immunology, Wake Forest School of Medicine; Department of Food Science and Technology, Isfahan University of Technology. Department of Internal Medicine- Molecular Medicine, Wake Forest School of Medicine; Department of Microbiology and Immunology, Wake Forest School of Medicine. Department of Food Science and Technology, Isfahan University of Technology; Research Institute for Biotechnology and Bioengineering, College of Agriculture, Isfahan University of Technology. Department of Geriatrics and Gerontology, Wake Forest School of Medicine. Department of Internal Medicine- Molecular Medicine, Wake Forest School of Medicine; Department of Microbiology and Immunology, Wake Forest School of Medicine; hyadav@wakehealth.edu"
Journal Title:J Vis Exp
Year:2019
Volume:20190731
Issue:149
Page Number: -
DOI: 10.3791/59524
ISSN/ISBN:1940-087X (Electronic) 1940-087X (Linking)
Abstract:"The emerging role of the gut microbiome in several human diseases demands a breakthrough of new tools, techniques and technologies. Such improvements are needed to decipher the utilization of microbiome modulators for human health benefits. However, the large-scale screening and optimization of modulators to validate microbiome modulation and predict related health benefits may be practically difficult due to the need for large number of animals and/or human subjects. To this end, in vitro or ex vivo models can facilitate preliminary screening of microbiome modulators. Herein, it is optimized and demonstrated an ex vivo fecal microbiota culture system that can be used for examining the effects of various interventions of gut microbiome modulators including probiotics, prebiotics and other food ingredients, aside from nutraceuticals and drugs, on the diversity and composition of the human gut microbiota. Inulin, one of the most widely studied prebiotic compounds and microbiome modulators, is used as an example here to examine its effect on the healthy fecal microbiota composition and its metabolic activities, such as fecal pH and the fecal levels of organic acids including lactate and short-chain fatty acids (SCFAs). The protocol may be useful for studies aimed at estimating the effects of different interventions of modulators on fecal microbiota profiles and at predicting their health impacts"
Keywords:"Batch Cell Culture Techniques DNA, Bacterial/*analysis/genetics Fatty Acids, Volatile/*metabolism Feces/chemistry/*microbiology Gastrointestinal Microbiome/drug effects Humans In Vitro Techniques Inulin/administration & dosage/*pharmacology Lactic Acid/*m;"
Notes:"MedlineAhmadi, Shokouh Wang, Shaohua Nagpal, Ravinder Mainali, Rabina Soleimanian-Zad, Sabihe Kitzman, Dalane Yadav, Hariom eng P30 AG021332/AG/NIA NIH HHS/ R01 AG018915/AG/NIA NIH HHS/ R01 DK114224/DK/NIDDK NIH HHS/ UL1 TR001420/TR/NCATS NIH HHS/ Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S. Video-Audio Media 2019/08/20 J Vis Exp. 2019 Jul 31; (149):10.3791/59524. doi: 10.3791/59524"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 27-12-2024