Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractSampling of Volatiles in Closed Systems: A Controlled Comparison of Three Solventless Volatile Collection Methods    Next AbstractSmelling chemosensory signals of males in anxious versus nonanxious condition increases state anxiety of female subjects »

PLoS Genet


Title:Sex pheromone evolution is associated with differential regulation of the same desaturase gene in two genera of leafroller moths
Author(s):Albre J; Lienard MA; Sirey TM; Schmidt S; Tooman LK; Carraher C; Greenwood DR; Lofstedt C; Newcomb RD;
Address:"The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand"
Journal Title:PLoS Genet
Year:2012
Volume:20120126
Issue:1
Page Number:e1002489 -
DOI: 10.1371/journal.pgen.1002489
ISSN/ISBN:1553-7404 (Electronic) 1553-7390 (Print) 1553-7390 (Linking)
Abstract:"Chemical signals are prevalent in sexual communication systems. Mate recognition has been extensively studied within the Lepidoptera, where the production and recognition of species-specific sex pheromone signals are typically the defining character. While the specific blend of compounds that makes up the sex pheromones of many species has been characterized, the molecular mechanisms underpinning the evolution of pheromone-based mate recognition systems remain largely unknown. We have focused on two sets of sibling species within the leafroller moth genera Ctenopseustis and Planotortrix that have rapidly evolved the use of distinct sex pheromone blends. The compounds within these blends differ almost exclusively in the relative position of double bonds that are introduced by desaturase enzymes. Of the six desaturase orthologs isolated from all four species, functional analyses in yeast and gene expression in pheromone glands implicate three in pheromone biosynthesis, two Delta9-desaturases, and a Delta10-desaturase, while the remaining three desaturases include a Delta6-desaturase, a terminal desaturase, and a non-functional desaturase. Comparative quantitative real-time PCR reveals that the Delta10-desaturase is differentially expressed in the pheromone glands of the two sets of sibling species, consistent with differences in the pheromone blend in both species pairs. In the pheromone glands of species that utilize (Z)-8-tetradecenyl acetate as sex pheromone component (Ctenopseustis obliquana and Planotortrix octo), the expression levels of the Delta10-desaturase are significantly higher than in the pheromone glands of their respective sibling species (C. herana and P. excessana). Our results demonstrate that interspecific sex pheromone differences are associated with differential regulation of the same desaturase gene in two genera of moths. We suggest that differential gene regulation among members of a multigene family may be an important mechanism of molecular innovation in sex pheromone evolution and speciation"
Keywords:"Acetates/*metabolism Animals Delta-5 Fatty Acid Desaturase Evolution, Molecular Fatty Acid Desaturases/*genetics/metabolism Fatty Acids/chemistry/metabolism Gene Expression Regulation/*genetics Genetic Speciation Lepidoptera/enzymology/*genetics Marriage;"
Notes:"MedlineAlbre, Jerome Lienard, Marjorie A Sirey, Tamara M Schmidt, Silvia Tooman, Leah K Carraher, Colm Greenwood, David R Lofstedt, Christer Newcomb, Richard D eng Research Support, Non-U.S. Gov't 2012/02/01 PLoS Genet. 2012 Jan; 8(1):e1002489. doi: 10.1371/journal.pgen.1002489. Epub 2012 Jan 26"

 
Back to top
 
Citation: El-Sayed AM 2025. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2025 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 16-01-2025