Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractArtificial intelligence enhanced sensors - enabling technologies to next-generation healthcare and biomedical platform    Next AbstractDevelopment of a New Sex Attractant via the Peripheral Coding of Pheromones in Mythimna loreyi »

Insect Sci


Title:Characterization of the pheromone receptors in Mythimna loreyi reveals the differentiation of sex pheromone recognition in Mythimna species
Author(s):Wang C; Liu L; Huang TY; Zhang Y; Liu Y; Wang GR;
Address:"State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China. School of Forestry, Northeast Forestry University, Harbin, China. Key Laboratory of Biohazard Monitoring, Green Prevention and Control for Artificial Grassland, Ministry of Agriculture and Rural Affairs, Institute of Grassland Research of Chinese Academy of Agricultural Sciences, Inner Mongolia Hohhot, China. Guangdong Laboratory of Lingnan Modern Agriculture, Shenzhen; Genome Analysis Laboratory of the Ministry of Agriculture; Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China"
Journal Title:Insect Sci
Year:2023
Volume:20230603
Issue:
Page Number: -
DOI: 10.1111/1744-7917.13215
ISSN/ISBN:1744-7917 (Electronic) 1672-9609 (Linking)
Abstract:"Pheromone receptors (PRs) are key proteins in the molecular mechanism of pheromone recognition, and exploring the functional differentiation of PRs between closely related species helps to understand the evolution of moth mating systems. Pheromone components of the agricultural pest Mythimna loreyi have turned into (Z)-9-tetradecen-1-yl acetate (Z9-14:OAc), (Z)-7-dodecen-1-yl acetate (Z7-12:OAc), and (Z)-11-hexadecen-1-yl acetate, while the composition differs from that of M. separata in the genus Mythimna. To understand the molecular mechanism of pheromone recognition, we sequenced and analyzed antennal transcriptomes to identify 62 odorant receptor (OR) genes. The expression levels of all putative ORs were analyzed using differentially expressed gene analysis. Six candidate PRs were quantified and functionally characterized in the Xenopus oocytes system. MlorPR6 and MlorPR3 were determined to be the receptors of major and minor components Z9-14:OAc and Z7-12:OAc. MlorPR1 and female antennae (FA)-biased MlorPR5 both possessed the ability to detect pheromones of sympatric species, including (Z,E)-9,12-tetradecadien-1-ol, (Z)-9-tetradecen-1-ol, and (Z)-9-tetradecenal. Based on the comparison of PR functions between M. loreyi and M. separata, we analyzed the differentiation of pheromone recognition mechanisms during the evolution of the mating systems of 2 Mythimna species"
Keywords:Mythimna loreyi Xenopus oocyte antennal transcriptome pheromone receptor sex pheromone;
Notes:"PublisherWang, Chan Liu, Lei Huang, Tian-Yu Zhang, Yu Liu, Yang Wang, Gui-Rong eng 31725023/National Natural Science Foundation of China/ 32072509/National Natural Science Foundation of China/ 32130089/National Natural Science Foundation of China/ KQTD20180411143628272/Shenzhen Science and Technology Program/ PT202101-02/Science Technology Innovation and Industrial Development of Shenzhen Dapeng New District/ Agricultural Science and Technology Innovation Program/ Australia 2023/06/03 Insect Sci. 2023 Jun 3. doi: 10.1111/1744-7917.13215"

 
Back to top
 
Citation: El-Sayed AM 2025. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2025 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 04-01-2025