Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractEnzymes involved in vinyl acetate decomposition by Pseudomonas fluorescens PCM 2123 strain    Next Abstract"Identification and field evaluation of attractants for the cranberry weevil, Anthonomus musculus Say" »

J Am Soc Mass Spectrom


Title:Formulation of matrix solutions for use in matrix-assisted laser desorption/ionization of biomolecules
Author(s):Sze ET; Chan TW; Wang G;
Address:"Department of Chemistry, Chinese University of Hong Kong, Shatin, Hong Kong"
Journal Title:J Am Soc Mass Spectrom
Year:1998
Volume:9
Issue:2
Page Number:166 - 174
DOI: 10.1016/S1044-0305(97)00237-7
ISSN/ISBN:1044-0305 (Print) 1044-0305 (Linking)
Abstract:"We report a simple method for converting solid matrices into useful matrix solutions for matrix-assisted laser desorption/ionization (MALDI). This method is based on the dissolution of the solid matrix in a liquid support of low volatility such as glycerol. An appropriate solubilizing reagent was added to promote the dissolution of the matrix materials into the liquid support. Selection of the solubilizing reagent is empirically related to an acid-base relationship, i.e., an acidic solid matrix requires a basic organic compound to form a stable matrix solution in the liquid support and vice versa. A tenfold increase in the solubility can be obtained for many solid matrices when appropriate solubilizing reagents are added into the glycerol support. This solubility enhancement is tentatively attributed to the ion-pair formation in a polar nonvolatile liquid support. In addition, the hydrophobicity of the solid matrix seems to play an important role in the efficiency of the resulting matrix solution. By using glycerol as liquid support, a hydrophilic matrix, such as 2,5-dihydroxybenzoic acid (DHB), showed a substantial 'peripheral effect,' in which good analyte ion signals could only be recorded at the peripheral region of the sample droplet. More hydrophobic matrices, such as alpha-cyano-4-hydroxycinnamic acid (alpha-CCA), exhibit better and more homogeneous responses at different regions of the droplets. The performance of these matrix solutions was evaluated in terms of the durability, reproducibility, sensitivity, high mass capability, and generality. A typical sample droplet can afford more than an hour of repeated sampling with excellent shot-to-shot reproducibility. A low picomole sensitivity was demonstrated using a luteinizing hormone releasing hormone (LHRH) in a Fourier transform ion cyclotron resonance mass spectrometer with a homemade external MALDI ion source. By using a commercial MALDI time-of-flight mass spectrometer, proteins with masses as high as 66,000 Da were successfully analyzed by using these matrix solutions"
Keywords:"Cyclotrons Fourier Analysis Gonadotropin-Releasing Hormone/analysis Humans Molecular Weight Solubility Solutions Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/*methods;"
Notes:"MedlineSze, E T Chan, T W Wang, G eng Research Support, Non-U.S. Gov't 1998/07/29 J Am Soc Mass Spectrom. 1998 Feb; 9(2):166-74. doi: 10.1016/S1044-0305(97)00237-7"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 29-12-2024