Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractMaize plants prime anti-herbivore responses by the memorizing and recalling of airborne information in their genome    Next AbstractEditorial: Oxylipins: The Front Line of Plant Interactions »

Proc Natl Acad Sci U S A


Title:Intake and transformation to a glycoside of (Z)-3-hexenol from infested neighbors reveals a mode of plant odor reception and defense
Author(s):Sugimoto K; Matsui K; Iijima Y; Akakabe Y; Muramoto S; Ozawa R; Uefune M; Sasaki R; Alamgir KM; Akitake S; Nobuke T; Galis I; Aoki K; Shibata D; Takabayashi J;
Address:"Graduate School of Medicine (Faculty of Agriculture), Yamaguchi University, Yoshida 1677-1, Yamaguchi 753-8515, Japan;Center for Ecological Research, Kyoto University, Otsu, Shiga 520-2113, Japan; Graduate School of Medicine (Faculty of Agriculture), Yamaguchi University, Yoshida 1677-1, Yamaguchi 753-8515, Japan; matsui@yamaguchi-u.ac.jp. Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan; and. Graduate School of Medicine (Faculty of Agriculture), Yamaguchi University, Yoshida 1677-1, Yamaguchi 753-8515, Japan; Center for Ecological Research, Kyoto University, Otsu, Shiga 520-2113, Japan; Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama 710-0046, Japan"
Journal Title:Proc Natl Acad Sci U S A
Year:2014
Volume:20140428
Issue:19
Page Number:7144 - 7149
DOI: 10.1073/pnas.1320660111
ISSN/ISBN:1091-6490 (Electronic) 0027-8424 (Print) 0027-8424 (Linking)
Abstract:"Plants receive volatile compounds emitted by neighboring plants that are infested by herbivores, and consequently the receiver plants begin to defend against forthcoming herbivory. However, to date, how plants receive volatiles and, consequently, how they fortify their defenses, is largely unknown. In this study, we found that undamaged tomato plants exposed to volatiles emitted by conspecifics infested with common cutworms (exposed plants) became more defensive against the larvae than those exposed to volatiles from uninfested conspecifics (control plants) in a constant airflow system under laboratory conditions. Comprehensive metabolite analyses showed that only the amount of (Z)-3-hexenylvicianoside (HexVic) was higher in exposed than control plants. This compound negatively affected the performance of common cutworms when added to an artificial diet. The aglycon of HexVic, (Z)-3-hexenol, was obtained from neighboring infested plants via the air. The amount of jasmonates (JAs) was not higher in exposed plants, and HexVic biosynthesis was independent of JA signaling. The use of (Z)-3-hexenol from neighboring damaged conspecifics for HexVic biosynthesis in exposed plants was also observed in an experimental field, indicating that (Z)-3-hexenol intake occurred even under fluctuating environmental conditions. Specific use of airborne (Z)-3-hexenol to form HexVic in undamaged tomato plants reveals a previously unidentified mechanism of plant defense"
Keywords:Animals Cyclopentanes/metabolism/pharmacology Glycosides/metabolism Herbivory/physiology Hexanols/*metabolism Larva/physiology Solanum lycopersicum/drug effects/*metabolism/*parasitology *Odorants Oxylipins/metabolism/pharmacology Plant Leaves/metabolism;
Notes:"MedlineSugimoto, Koichi Matsui, Kenji Iijima, Yoko Akakabe, Yoshihiko Muramoto, Shoko Ozawa, Rika Uefune, Masayoshi Sasaki, Ryosuke Alamgir, Kabir Md Akitake, Shota Nobuke, Tatsunori Galis, Ivan Aoki, Koh Shibata, Daisuke Takabayashi, Junji eng Research Support, Non-U.S. Gov't 2014/04/30 Proc Natl Acad Sci U S A. 2014 May 13; 111(19):7144-9. doi: 10.1073/pnas.1320660111. Epub 2014 Apr 28"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 29-12-2024