Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractDifferential Response of a Local Population of Entomopathogenic Nematodes to Non-Native Herbivore Induced Plant Volatiles (HIPV) in the Laboratory and Field    Next AbstractEvaluation of semiochemical based push-pull strategy for population suppression of ambrosia beetle vectors of laurel wilt disease in avocado »

Ecol Evol


Title:Bacterial phytopathogen infection disrupts belowground plant indirect defense mediated by tritrophic cascade
Author(s):Rivera MJ; Pelz-Stelinski KS; Martini X; Stelinski LL;
Address:Entomology and Nematology Department Citrus Research and Education Center University of Florida Lake Alfred FL USA. Entomology and Nematology Department North Florida Research and Education Center University of Florida Quincy FL USA
Journal Title:Ecol Evol
Year:2017
Volume:20170526
Issue:13
Page Number:4844 - 4854
DOI: 10.1002/ece3.3052
ISSN/ISBN:2045-7758 (Print) 2045-7758 (Electronic) 2045-7758 (Linking)
Abstract:"Plants can defend themselves against herbivores through activation of defensive pathways and attraction of third-trophic-level predators and parasites. Trophic cascades that mediate interactions in the phytobiome are part of a larger dynamic including the pathogens of the plant itself, which are known to greatly influence plant defenses. As such, we investigated the impact of a phloem-limited bacterial pathogen, Candidatus Liberibacter asiaticus (CLas), in cultivated citrus rootstock on a well-studied belowground tritrophic interaction involving the attraction of an entomopathogenic nematode (EPN), Steinernema diaprepesi, to their root-feeding insect hosts, Diaprepes abbreviatus larvae. Using belowground olfactometers, we show how CLas infection interferes with this belowground interaction by similarly inducing the release of a C12 terpene, pregeijerene, and disconnecting the association of the terpene with insect presence. D. abbreviatus larvae that were not feeding but in the presence of a CLas-infected plant were more likely to be infected by EPN than those near uninfected plants. Furthermore, nonfeeding larvae associated with CLas-infected plants were just as likely to be infected by EPN as those near noninfected plants with D. abbreviatus larval damage. Larvae of two weevil species, D. abbreviatus and Pachnaeus litus, were also more attracted to plants with infection than to uninfected plants. D. abbreviatus larvae were most active when exposed to pregeijerene at a concentration of 0.1 mug/mul. We attribute this attraction to CLas-infected plants to the same signal previously thought to be a herbivore-induced plant volatile specifically induced by root-feeding insects, pregeijerene, by assessing volatiles collected from the roots of infected plants and uninfected plants with and without feeding D. abbreviatus. Synthesis. Phytopathogens can influence the structuring of soil communities extending to the third trophic level. Field populations of EPN may be less effective at host-finding using pregeijerene as a cue in citrus grove agroecosystems with high presence of CLas infection"
Keywords:belowground tritrophic interactions entomopathogenic nematodes herbivore-induced plant volatiles huanglongbing plant-insect interactions soil ecology;
Notes:"PubMed-not-MEDLINERivera, Monique J Pelz-Stelinski, Kirsten S Martini, Xavier Stelinski, Lukasz L eng England 2017/07/12 Ecol Evol. 2017 May 26; 7(13):4844-4854. doi: 10.1002/ece3.3052. eCollection 2017 Jul"

 
Back to top
 
Citation: El-Sayed AM 2025. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2025 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 01-01-2025