Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractNonequilibrium atmospheric secondary organic aerosol formation and growth    Next AbstractDetection of decomposition volatile organic compounds in soil following removal of remains from a surface deposition site »

Aerosol Sci Technol


Title:Chemical Characterization of Nanoparticles and Volatiles Present in Mainstream Hookah Smoke
Author(s):Perraud V; Lawler MJ; Malecha KT; Johnson RM; Herman D; Staimer N; Kleinman MT; Nizkorodov SA; Smith JN;
Address:"Department of Chemistry, University of California, Irvine, California, USA. School of Medicine, University of California, Irvine, California, USA. Department of Epidemiology, University of California, Irvine, California, USA"
Journal Title:Aerosol Sci Technol
Year:2019
Volume:20190624
Issue:9
Page Number:1023 - 1039
DOI: 10.1080/02786826.2019.1628342
ISSN/ISBN:0278-6826 (Print) 0278-6826 (Linking)
Abstract:"Waterpipe smoking is becoming more popular worldwide and there is a pressing need to better characterize the exposure of smokers to chemical compounds present in the mainstream smoke. We report real-time measurements of mainstream smoke for carbon monoxide, volatile organic compounds and nanoparticle size distribution and chemical composition using a custom dilution flow tube. A conventional tobacco mixture, a dark leaf unwashed tobacco and a nicotine-free herbal tobacco were studied. Results show that carbon monoxide is present in the mainstream smoke and originates primarily from the charcoal used to heat the tobacco. Online measurements of volatile organic compounds in mainstream smoke showed an overwhelming contribution from glycerol. Gas phase analysis also showed that very little filtration of the gas phase products is provided by the percolation of mainstream smoke through water. Waterpipe smoking generated high concentrations of 4-100 nm nanoparticles, which were mainly composed of sugar derivatives and especially abundant in the first 10 min of the smoking session. These measured emissions of volatiles and particles are compared with those from a reference cigarette (3R4F) and represent the equivalent of the emission of one or more entire cigarettes for a single puff of hookah smoke. Considerations related to the health impacts of waterpipe smoking are discussed"
Keywords:
Notes:"PubMed-not-MEDLINEPerraud, Veronique Lawler, Michael J Malecha, Kurtis T Johnson, Rebecca M Herman, David Staimer, Norbert Kleinman, Michael T Nizkorodov, Sergey A Smith, James N eng R01 ES027232/ES/NIEHS NIH HHS/ 2019/01/01 Aerosol Sci Technol. 2019; 53(9):1023-1039. doi: 10.1080/02786826.2019.1628342. Epub 2019 Jun 24"

 
Back to top
 
Citation: El-Sayed AM 2025. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2025 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 01-01-2025