Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractFunctional assays for analysis of yeast ste6 mutants    Next AbstractExocrine glands in the legs of the social wasp Vespula vulgaris »

Biotechnol J


Title:Bacterial olfaction
Author(s):Nijland R; Burgess JG;
Address:"Dove Marine Laboratory, School of Marine Science and Technology, Newcastle University, Cullercoats, UK"
Journal Title:Biotechnol J
Year:2010
Volume:5
Issue:9
Page Number:974 - 977
DOI: 10.1002/biot.201000174
ISSN/ISBN:1860-7314 (Electronic) 1860-6768 (Linking)
Abstract:"Sensing their environment is a crucial ability of all life forms. In higher eukaryotes the sensing of airborne volatile compounds, or olfaction, is well developed. In plants, slime moulds and yeast there is also compelling evidence that these organisms can smell their environment and respond accordingly. Here we show that bacteria are also capable of olfaction. Bacillus licheniformis was able to sense airborne volatile metabolites produced by neighbouring bacterial cultures and cells could respond to this chemical information in a coordinated way. When Bacillus licheniformis was grown in a microtitre plate adjacent to a bacterial culture of the same or a different species, growing in complex medium, biofilm formation and pigment production were elicited by volatile molecules. A weaker response occurred in increasingly distant wells. The emitted volatile molecule was identified as ammonia. These data demonstrate that B. licheniformis has evolved the ability collect information about its environment from the surrounding air and physiologically respond to it in a manner similar to olfaction. This is the first time that a behavioural response triggered by odorant molecules received through the gas phase is described in bacteria"
Keywords:"Ammonia/*metabolism Bacillus/*metabolism Biofilms/growth & development Culture Media, Conditioned/metabolism Volatile Organic Compounds/metabolism;"
Notes:"MedlineNijland, Reindert Burgess, J Grant eng Research Support, Non-U.S. Gov't Germany 2010/08/20 Biotechnol J. 2010 Sep; 5(9):974-7. doi: 10.1002/biot.201000174"

 
Back to top
 
Citation: El-Sayed AM 2025. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2025 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 06-01-2025