Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractChemical ecology of bumble bees    Next AbstractThe examination of vegetable- and mineral oil-based inks' effects on print quality: Green printing effects with different oils »

Int J Mol Sci


Title:Nematicidal Volatiles from Bacillus atrophaeus GBSC56 Promote Growth and Stimulate Induced Systemic Resistance in Tomato against Meloidogyne incognita
Author(s):Ayaz M; Ali Q; Farzand A; Khan AR; Ling H; Gao X;
Address:"Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China. Department of Plant Pathology, University of Agriculture, Faisalabad P.O. Box 38040, Pakistan. Shandong Vland Biotechnology Co., Ltd., Binzhou 251700, China"
Journal Title:Int J Mol Sci
Year:2021
Volume:20210510
Issue:9
Page Number: -
DOI: 10.3390/ijms22095049
ISSN/ISBN:1422-0067 (Electronic) 1422-0067 (Linking)
Abstract:"Bacillus volatiles to control plant nematodes is a topic of great interest among researchers due to its safe and environmentally friendly nature. Bacillus strain GBSC56 isolated from the Tibet region of China showed high nematicidal activity against M. incognita, with 90% mortality as compared with control in a partition plate experiment. Pure volatiles produced by GBSC56 were identified through gas chromatography and mass spectrometry (GC-MS). Among 10 volatile organic compounds (VOCs), 3 volatiles, i.e., dimethyl disulfide (DMDS), methyl isovalerate (MIV), and 2-undecanone (2-UD) showed strong nematicidal activity with a mortality rate of 87%, 83%, and 80%, respectively, against M. incognita. The VOCs induced severe oxidative stress in nematodes, which caused rapid death. Moreover, in the presence of volatiles, the activity of antioxidant enzymes, i.e., SOD, CAT, POD, and APX, was observed to be enhanced in M. incognita-infested roots, which might reduce the adverse effect of oxidative stress-induced after infection. Moreover, genes responsible for plant growth promotion SlCKX1, SlIAA1, and Exp18 showed an upsurge in expression, while AC01 was downregulated in infested plants. Furthermore, the defense-related genes (PR1, PR5, and SlLOX1) in infested tomato plants were upregulated after treatment with MIV and 2-UD. These findings suggest that GBSC56 possesses excellent biocontrol potential against M. incognita. Furthermore, the study provides new insight into the mechanism by which GBSC56 nematicidal volatiles regulate antioxidant enzymes, the key genes involved in plant growth promotion, and the defense mechanism M. incognita-infested tomato plants use to efficiently manage root-knot disease"
Keywords:Animals Antinematodal Agents/metabolism Bacillus/*genetics/metabolism China Disease Resistance/*genetics Gas Chromatography-Mass Spectrometry Solanum lycopersicum/*genetics/microbiology/parasitology Plant Diseases/genetics/microbiology Tylenchoidea/geneti;
Notes:"MedlineAyaz, Muhammad Ali, Qurban Farzand, Ayaz Khan, Abdur Rashid Ling, Hongli Gao, Xuewen eng Qingdao (QDSWZK201902)/Joint Foundation of Scientific Research Think Tank of Biological Manufacturing Industry in Qingdao/ grant number 2017YFD0200400]/Key Project of NSFC regional innovation and development joint fund (U20A2039), the National Key Re-search and Development Program of China/ Switzerland 2021/06/03 Int J Mol Sci. 2021 May 10; 22(9):5049. doi: 10.3390/ijms22095049"

 
Back to top
 
Citation: El-Sayed AM 2025. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2025 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 08-01-2025