Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractComputational model of the insect pheromone transduction cascade    Next AbstractAn Electronic Nose for Royal Delicious Apple Quality Assessment - A Tri-layer Approach »

PLoS One


Title:Dynamical modeling of the moth pheromone-sensitive olfactory receptor neuron within its sensillar environment
Author(s):Gu Y; Rospars JP;
Address:"INRA, UMR 1272, Physiologie de l'Insecte: Signalisation et Communication, Versailles, France"
Journal Title:PLoS One
Year:2011
Volume:20110302
Issue:3
Page Number:e17422 -
DOI: 10.1371/journal.pone.0017422
ISSN/ISBN:1932-6203 (Electronic) 1932-6203 (Linking)
Abstract:"In insects, olfactory receptor neurons (ORNs), surrounded with auxiliary cells and protected by a cuticular wall, form small discrete sensory organs--the sensilla. The moth pheromone-sensitive sensillum is a well studied example of hair-like sensillum that is favorable to both experimental and modeling investigations. The model presented takes into account both the molecular processes of ORNs, i.e. the biochemical reactions and ionic currents giving rise to the receptor potential, and the cellular organization and compartmentalization of the organ represented by an electrical circuit. The number of isopotential compartments needed to describe the long dendrite bearing pheromone receptors was determined. The transduction parameters that must be modified when the number of compartments is increased were identified. This model reproduces the amplitude and time course of the experimentally recorded receptor potential. A first complete version of the model was analyzed in response to pheromone pulses of various strengths. It provided a quantitative description of the spatial and temporal evolution of the pheromone-dependent conductances, currents and potentials along the outer dendrite and served to determine the contribution of the various steps in the cascade to its global sensitivity. A second simplified version of the model, utilizing a single depolarizing conductance and leak conductances for repolarizing the ORN, was derived from the first version. It served to analyze the effects on the sensory properties of varying the electrical parameters and the size of the main sensillum parts. The consequences of the results obtained on the still uncertain mechanisms of olfactory transduction in moth ORNs--involvement or not of G-proteins, role of chloride and potassium currents--are discussed as well as the optimality of the sensillum organization, the dependence of biochemical parameters on the neuron spatial extension and the respective contributions of the biochemical and electrical parameters to the overall neuron response"
Keywords:"Animals Computer Simulation Dendrites/drug effects/physiology Electricity Ion Channel Gating/drug effects Kinetics *Models, Biological Moths/*drug effects/*physiology Olfactory Receptor Neurons/*drug effects/*physiology Pheromones/*pharmacology Second Mes;"
Notes:"MedlineGu, Yuqiao Rospars, Jean-Pierre eng Research Support, Non-U.S. Gov't 2011/03/15 PLoS One. 2011 Mar 2; 6(3):e17422. doi: 10.1371/journal.pone.0017422"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 27-12-2024