Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractHydroxyalkoxy radicals: importance of intramolecular hydrogen bonding on chain branching reactions in the combustion and atmospheric decomposition of hydrocarbons    Next AbstractA breath of fresh air - the potential for COVID-19 breath diagnostics »

Genetics


Title:Afr1p regulates the Saccharomyces cerevisiae alpha-factor receptor by a mechanism that is distinct from receptor phosphorylation and endocytosis
Author(s):Davis C; Dube P; Konopka JB;
Address:"Department of Microbiology, State University of New York, Stony Brook 11794-5222, USA"
Journal Title:Genetics
Year:1998
Volume:148
Issue:2
Page Number:625 - 635
DOI: 10.1093/genetics/148.2.625
ISSN/ISBN:0016-6731 (Print) 0016-6731 (Linking)
Abstract:"The alpha-factor pheromone receptor activates a G protein signaling pathway that induces the conjugation of the yeast Saccharomyces cerevisiae. Our previous studies identified AFR1 as a gene that regulates this signaling pathway because overexpression of AFR1 promoted resistance to alpha-factor. AFR1 also showed an interesting genetic relationship with the alpha-factor receptor gene, STE2, suggesting that the receptor is regulated by Afr1p. To investigate the mechanism of this regulation, we tested AFR1 for a role in the two processes that are known to regulate receptor signaling: phosphorylation and down-regulation of ligand-bound receptors by endocytosis. AFR1 overexpression diminished signaling in a strain that lacks the C-terminal phosphorylation sites of the receptor, indicating that AFR1 acts independently of phosphorylation. The effects of AFR1 overexpression were weaker in strains that were defective in receptor endocytosis. However, AFR1 overexpression did not detectably influence receptor endocytosis or the stability of the receptor protein. Instead, gene dosage studies showed that the effects of AFR1 overexpression on signaling were inversely proportional to the number of receptors. These results indicate that AFR1 acts independently of endocytosis, and that the weaker effects of AFR1 in strains that are defective in receptor endocytosis were probably an indirect consequence of their increased receptor number caused by the failure of receptors to undergo ligand-stimulated endocytosis. Analysis of the ligand binding properties of the receptor showed that AFR1 overexpression did not alter the number of cell-surface receptors or the affinity for alpha-factor. Thus, Afr1p prevents alpha-factor receptors from activating G protein signaling by a mechanism that is distinct from other known pathways"
Keywords:"Cell Division/genetics Chemoreceptor Cells/metabolism Endocytosis/physiology Fungal Proteins/*metabolism Gene Dosage Gene Expression Regulation, Fungal/genetics Mating Factor Peptides/*metabolism Pheromones/physiology Phosphorylation Plasmids/genetics Plo;"
Notes:"MedlineDavis, C Dube, P Konopka, J B eng Research Support, Non-U.S. Gov't 1998/03/20 Genetics. 1998 Feb; 148(2):625-35. doi: 10.1093/genetics/148.2.625"

 
Back to top
 
Citation: El-Sayed AM 2025. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2025 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 03-01-2025