Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractTranscriptome profile analysis of cell proliferation molecular processes during multicellular trichome formation induced by tomato Wov gene in tobacco    Next AbstractThe scarecrow-like transcription factor SlSCL3 regulates volatile terpene biosynthesis and glandular trichome size in tomato (Solanum lycopersicum) »

Trends Biotechnol


Title:Simultaneous Removal of Multicomponent VOCs in Biofilters
Author(s):Yang C; Qian H; Li X; Cheng Y; He H; Zeng G; Xi J;
Address:"College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China; These authors contributed equally to this paper. Electronic address: yangc@hnu.edu.cn. College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China; These authors contributed equally to this paper. College of Environmental Science and Engineering, Guilin University of Technology, Guilin, Guangxi 541006, China; These authors contributed equally to this paper. School of Environment, Tsinghua University, Beijing 100084, China; These authors contributed equally to this paper. Electronic address: xijinying@tsinghua.edu.cn"
Journal Title:Trends Biotechnol
Year:2018
Volume:20180227
Issue:7
Page Number:673 - 685
DOI: 10.1016/j.tibtech.2018.02.004
ISSN/ISBN:1879-3096 (Electronic) 0167-7799 (Linking)
Abstract:"Volatile organic compounds (VOCs) are significant atmospheric pollutants that cause environmental and health risks. Waste gases polluted with multiple VOCs often need to be purified simultaneously in biofilters, which may lead to antagonistic, neutral, or synergistic effects on removal performance. Antagonism limits the application of biofilters to simultaneous treatment of multiple VOCs, while synergism has not yet been fully exploited. We review the interactions among multiple target pollutants and the changes in the bioavailability and biodegradability of substrates that are responsible for substrate interactions. Potential strategies for enhancing biofilter performance are then discussed. Finally, we propose further efforts to alleviate antagonism by enhancing bioavailability and biodegradability, and discuss possible challenges to take advantage of synergism"
Keywords:"Bacteria/*metabolism *Biodegradation, Environmental Biofilms Catabolite Repression Environmental Pollutants/chemistry/metabolism Filtration/*methods Fungi/*metabolism Gases/chemistry Hydrophobic and Hydrophilic Interactions *Volatile Organic Compounds/che;"
Notes:"MedlineYang, Chunping Qian, Hui Li, Xiang Cheng, Yan He, Huijun Zeng, Guangming Xi, Jinying eng Research Support, Non-U.S. Gov't Review England 2018/03/04 Trends Biotechnol. 2018 Jul; 36(7):673-685. doi: 10.1016/j.tibtech.2018.02.004. Epub 2018 Feb 27"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 27-12-2024