Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractQuantification of methyl thiocyanate in the headspace of Pseudomonas aeruginosa cultures and in the breath of cystic fibrosis patients by selected ion flow tube mass spectrometry    Next AbstractQuantitative analysis of volatile metabolites released in vitro by bacteria of the genus Stenotrophomonas for identification of breath biomarkers of respiratory infection in cystic fibrosis »

J Appl Microbiol


Title:Variability in the concentrations of volatile metabolites emitted by genotypically different strains of Pseudomonas aeruginosa
Author(s):Shestivska V; Spanel P; Dryahina K; Sovova K; Smith D; Musilek M; Nemec A;
Address:"J Heyrovsky Institute of Physical Chemistry of Science, Academy of Science of the Czech Republic, Prague, Czech Republic"
Journal Title:J Appl Microbiol
Year:2012
Volume:20120724
Issue:3
Page Number:701 - 713
DOI: 10.1111/j.1365-2672.2012.05370.x
ISSN/ISBN:1365-2672 (Electronic) 1364-5072 (Linking)
Abstract:"AIMS: To characterize the volatile metabolites produced by genotypically diverse strains of Pseudomonas aeruginosa in order to evaluate their potential for use as biomarkers of lung infection in noninvasive breath analysis. METHODS AND RESULTS: Volatile organic compounds (VOCs) emitted from 36 clinical strains of Ps. aeruginosa (belonging to different multilocus sequence types) cultured in liquid and on solid media were analysed by gas chromatography mass spectrometry (GC-MS) and selected ion flow tube mass spectrometry (SIFT-MS). Several previously identified VOCs were detected, including ethanol, acetone, 2-butanone, 2-pentanone, isoprene, aminoacetophenone, dimethyl sulphide, dimethyl disulphide, dimethyl trisulphide and methyl thiocyanate. Additionally, significant production of 3-methyl-butanone, acetophenone, methylthioacetate and methyl thiobutanoate was observed for the first time in this study. SIFT-MS quantifications of VOCs showed high variability between genotypically distinct strains. CONCLUSIONS: The data obtained indicate that the production rates of the volatile biomarkers of Ps. aeruginosa vary by two orders of magnitude between different strains cultured under the same conditions. Similar variability was observed for both liquid and solid media. SIGNIFICANCE AND IMPACT OF THE STUDY: Inter-strain genotypic variability strongly influences the concentrations of the volatile biomarkers from Ps. aeruginosa. A group of several biomarkers quantified in real time in exhaled breath may thus provide a more valuable indicator of the course of pulmonary infections compared to a single biomarker"
Keywords:Bacterial Typing Techniques Biomarkers/analysis Breath Tests/methods Gas Chromatography-Mass Spectrometry Genotype Humans Multilocus Sequence Typing Pseudomonas aeruginosa/classification/genetics/*metabolism Volatile Organic Compounds/*analysis;
Notes:"MedlineShestivska, V Spanel, P Dryahina, K Sovova, K Smith, D Musilek, M Nemec, A eng Research Support, Non-U.S. Gov't England 2012/06/26 J Appl Microbiol. 2012 Sep; 113(3):701-13. doi: 10.1111/j.1365-2672.2012.05370.x. Epub 2012 Jul 24"

 
Back to top
 
Citation: El-Sayed AM 2025. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2025 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 08-01-2025