Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractScent marking by male dwarf hamsters (Phodopus sungorus campbelli) in response to conspecific odors    Next AbstractProduction of pheromones by artificially fed males of the tick Amblyomma maculatum (Acari: Ixodidae) »

Membranes (Basel)


Title:Volatile Organic Compound (VOC) Removal by Vapor Permeation at Low VOC Concentrations: Laboratory Scale Results and Modeling for Scale Up
Author(s):Rebollar-Perez G; Carretier E; Lesage N; Moulin P;
Address:"Universite Paul Cezanne Aix Marseille, Laboratoire de Mecanique, Modelisation et Procedes Propres (M2P2-UMR 6181), Europole de l'Arbois, BP. 80, Batiment Laennec, Hall C, 13545 Aix en Provence Cedex 04, France. rebollar@unam.mx. Universite Paul Cezanne Aix Marseille, Laboratoire de Mecanique, Modelisation et Procedes Propres (M2P2-UMR 6181), Europole de l'Arbois, BP. 80, Batiment Laennec, Hall C, 13545 Aix en Provence Cedex 04, France. emilie.carretier@univ-cezanne.fr. TOTAL-Pole de Recherche et Developpement Mont/Lacq, RN 117 BP47, 64000 Lacq, France. nicolas.lesage@total.com. Universite Paul Cezanne Aix Marseille, Laboratoire de Mecanique, Modelisation et Procedes Propres (M2P2-UMR 6181), Europole de l'Arbois, BP. 80, Batiment Laennec, Hall C, 13545 Aix en Provence Cedex 04, France. philippe.moulin@univ-cezanne.fr"
Journal Title:Membranes (Basel)
Year:2011
Volume:20110303
Issue:1
Page Number:80 - 90
DOI: 10.3390/membranes1010080
ISSN/ISBN:2077-0375 (Print) 2077-0375 (Electronic) 2077-0375 (Linking)
Abstract:"Petroleum transformation industries have applied membrane processes for solvent and hydrocarbon recovery as an economic alternative to reduce their emissions and reuse evaporated components. Separation of the volatile organic compounds (VOCs) (toluene-propylene-butadiene) from air was performed using a poly dimethyl siloxane (PDMS)/alpha-alumina membrane. The experimental set-up followed the constant pressure/variable flow set-up and was operated at ~21 degrees C. The membrane is held in a stainless steel module and has a separation area of 55 x 10-4 m(2). Feed stream was set to atmospheric pressure and permeate side to vacuum between 3 and 5 mbar. To determine the performance of the module, the removed fraction of VOC was analyzed by Gas Chromatography/Flame Ionization Detector (GC/FID). The separation of the binary, ternary and quaternary hydrocarbon mixtures from air was performed at different flow rates and more especially at low concentrations. The permeate flux, permeance, enrichment factor, separation efficiency and the recovery extent of the membrane were determined as a function of these operating conditions. The permeability coefficients and the permeate flux through the composite PDMS-alumina membrane follow the order given by the Hildebrand parameter: toluene > 1,3-butadiene > propylene. The simulated data for the binary VOC/air mixtures showed fairly good agreement with the experimental results in the case of 1,3-butadiene and propylene. The discrepancies observed for toluene permeation could be minimized by taking into account the effects of the porous support and an influence of the concentration polarization. Finally, the installation of a 0.02 m2 membrane module would reduce 95% of the VOC content introduced at real concentration conditions used in the oil industry"
Keywords:
Notes:"PubMed-not-MEDLINERebollar-Perez, Georgette Carretier, Emilie Lesage, Nicolas Moulin, Philippe eng Switzerland 2011/01/01 Membranes (Basel). 2011 Mar 3; 1(1):80-90. doi: 10.3390/membranes1010080"

 
Back to top
 
Citation: El-Sayed AM 2025. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2025 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 02-01-2025