Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous Abstract"Synthesizing neurophysiology, genetics, behaviour and learning to produce whole-insect programmable sensors to detect volatile chemicals"    Next AbstractTetrachloroethylene emissions and exposure in dry cleaning »

World J Microbiol Biotechnol


Title:Pseudomonas chlororaphis metabolites as biocontrol promoters of plant health and improved crop yield
Author(s):Raio A; Puopolo G;
Address:"Institute for Sustainable Plant Protection, National Research Council, Sesto Fiorentino, FI, Italy. aida.raio@ipsp.cnr.it. Center Agriculture Food Environment C3A, University of Trento/Fondazione Edmund Mach, San Michele all'Adige, TN, Italy. Department of Sustainable Agro-Ecosystems and Bioresources, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, TN, Italy"
Journal Title:World J Microbiol Biotechnol
Year:2021
Volume:20210512
Issue:6
Page Number:99 -
DOI: 10.1007/s11274-021-03063-w
ISSN/ISBN:1573-0972 (Electronic) 0959-3993 (Linking)
Abstract:"The Pseudomonas fluorescens complex contains at least eight phylogenetic groups and each of these includes several bacterial species sharing ecological and physiological traits. Pseudomonas chlororaphis classified in a separate group is represented by three different subspecies that show distinctive traits exploitable for phytostimulation and biocontrol of phytopathogens. The high level of microbial competitiveness in soil as well as the effectiveness in controlling several plant pathogens and pests can be related to the P. chlororaphis ability to implement different stimulating and toxic mechanisms in its interaction with plants and the other micro- and macroorganisms. Pseudomonas chlororaphis strains produce antibiotics, such as phenazines, pyrrolnitrine, 2-hexyl, 5-propyl resorcinol and hydrogen cyanide, siderophores such as pyoverdine and achromobactine and a complex blend of volatile organic compounds (VOCs) that effectively contribute to the control of several plant pathogens, nematodes and insects. Phenazines and some VOCs are also involved in the induction of systemic resistance in plants. This complex set of beneficial strategies explains the high increasing interest in P. chlororaphis for commercial and biotechnological applications. The aim of this review is to highlight the role of the different mechanisms involved in the biocontrol activity of P. chlororaphis strains"
Keywords:Biological Control Agents/*pharmacology Disease Resistance Phylogeny Plant Development/*drug effects Pseudomonas chlororaphis/*chemistry Secondary Metabolism Biocontrol Induced systemic resistance Pseudomonas chlororaphis Rhizobacteria;
Notes:"MedlineRaio, Aida Puopolo, Gerardo eng Review Germany 2021/05/13 World J Microbiol Biotechnol. 2021 May 12; 37(6):99. doi: 10.1007/s11274-021-03063-w"

 
Back to top
 
Citation: El-Sayed AM 2025. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2025 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 01-01-2025