Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractProtein-assisted pericyclic reactions: an alternate hypothesis for the action of quantal receptors    Next AbstractTesting the optimal defence hypothesis for two indirect defences: extrafloral nectar and volatile organic compounds »

Glob Chang Biol


Title:Water stress and insect herbivory interactively reduce crop yield while the insect pollination benefit is conserved
Author(s):Raderschall CA; Vico G; Lundin O; Taylor AR; Bommarco R;
Address:"Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden. Department of Crop Production Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden"
Journal Title:Glob Chang Biol
Year:2021
Volume:20201029
Issue:1
Page Number:71 - 83
DOI: 10.1111/gcb.15386
ISSN/ISBN:1365-2486 (Electronic) 1354-1013 (Print) 1354-1013 (Linking)
Abstract:"Climate change is predicted to hamper crop production due to precipitation deficits and warmer temperatures inducing both water stress and increasing herbivory due to more abundant insect pests. Consequently, crop yields will be impacted simultaneously by abiotic and biotic stressors. Extensive yield losses due to such climate change stressors might, however, be mitigated by ecosystem services such as insect pollination. We examined the single and combined effects of water stress, insect herbivory and insect pollination on faba bean yield components and above- and belowground plant biomass under realistic field conditions. We used rainout shelters to simulate a scenario in line with climate change projections, with adequate water supply at sowing followed by a long period without precipitation. This induced a gradually increasing water stress, culminating around crop flowering and yield formation. We found that gradually increasing water stress combined with insect herbivory by aphids interactively shaped yield in faba beans. Individually, aphid herbivory reduced yield by 79% and water stress reduced yield by 52%. However, the combined effect of water stress and aphid herbivory reduced yield less (84%) than the sum of the individual stressor effects. In contrast, insect pollination increased yield by 68% independently of water availability and insect herbivory. Our results suggest that yield losses can be greatly reduced when both water stress and insect herbivory are reduced simultaneously. In contrast, reducing only one stressor has negligible benefits on yield as long as the crop is suffering from the other stressor. We call for further exploration of interactions among ecosystem services and biotic and abiotic stressors that simulate realistic conditions under climate change"
Keywords:Animals Dehydration Ecosystem *Herbivory Insecta *Pollination climate change drought faba bean herbivory insect pollination water stress;
Notes:"MedlineRaderschall, Chloe A Vico, Giulia Lundin, Ola Taylor, Astrid R Bommarco, Riccardo eng Swedish University of Agricultural Sciences/ 2018-02872/Formas/ 2016-00626/Formas/ England 2020/10/30 Glob Chang Biol. 2021 Jan; 27(1):71-83. doi: 10.1111/gcb.15386. Epub 2020 Oct 29"

 
Back to top
 
Citation: El-Sayed AM 2025. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2025 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 06-01-2025