Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractCharacterization of Key Odor-Active Off-Flavor Compounds in Aged Pasteurized Yogurt by Sensory-Directed Flavor Analysis    Next AbstractAnalysis of insect-induced volatiles from rice »

Plant Physiol Biochem


Title:Biosynthesis and emission of insect-induced methyl salicylate and methyl benzoate from rice
Author(s):Zhao N; Guan J; Ferrer JL; Engle N; Chern M; Ronald P; Tschaplinski TJ; Chen F;
Address:"Department of Plant Sciences, 252 Ellington Plant Sciences Building, University of Tennessee, 2431 Joe Johnson Drive, Knoxville, TN 37996, USA"
Journal Title:Plant Physiol Biochem
Year:2010
Volume:20100208
Issue:4
Page Number:279 - 287
DOI: 10.1016/j.plaphy.2010.01.023
ISSN/ISBN:1873-2690 (Electronic) 0981-9428 (Linking)
Abstract:"Two benzenoid esters, methyl salicylate (MeSA) and methyl benzoate (MeBA), were detected from insect-damaged rice plants. By correlating metabolite production with gene expression analysis, five candidate genes encoding putative carboxyl methyltransferases were identified. Enzymatic assays with Escherichia coli-expressed recombinant proteins demonstrated that only one of the five candidates, OsBSMT1, has salicylic acid (SA) methyltransferase (SAMT) and benzoic acid (BA) methyltransferase (BAMT) activities for producing MeSA and MeBA, respectively. Whereas OsBSMT1 is phylogenetically relatively distant from dicot SAMTs, the three-dimensional structure of OsBSMT1, which was determined using homology-based structural modeling, is highly similar to those of characterized SAMTs. Analyses of OsBSMT1 expression in wild-type rice plants under various stress conditions indicate that the jasmonic acid (JA) signaling pathway plays a critical role in regulating the production and emission of MeSA in rice. Further analysis using transgenic rice plants overexpressing NH1, a key component of the SA signaling pathway in rice, suggests that the SA signaling pathway also plays an important role in governing OsBSMT1 expression and emission of its products, probably through a crosstalk with the JA signaling pathway. The role of the volatile products of OsBSMT1, MeSA and MeBA, in rice defense against insect herbivory is discussed"
Keywords:"Animals Benzoates/*metabolism Cyclopentanes/metabolism Escherichia coli Gene Expression *Genes, Plant Immunity, Innate/genetics *Insecta Methyltransferases/*genetics/metabolism Molecular Structure Oryza/*genetics/metabolism Oxylipins/metabolism Plant Dise;"
Notes:"MedlineZhao, Nan Guan, Ju Ferrer, Jean-Luc Engle, Nancy Chern, Mawsheng Ronald, Pamela Tschaplinski, Timothy J Chen, Feng eng Research Support, Non-U.S. Gov't France 2010/03/05 Plant Physiol Biochem. 2010 Apr; 48(4):279-87. doi: 10.1016/j.plaphy.2010.01.023. Epub 2010 Feb 8"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 27-12-2024