Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractIdentification and Characterization of the Larval Settlement Pheromone Protein Components in Adult Shells of Crassostrea gigas: A Novel Function of Shell Matrix Proteins    Next AbstractGenic rather than genome-wide differences between sexually deceptive Ophrys orchids with different pollinators »

Proc Biol Sci


Title:A new algorithm quantifies the roles of wind and midge flight activity in the bluetongue epizootic in northwest Europe
Author(s):Sedda L; Brown HE; Purse BV; Burgin L; Gloster J; Rogers DJ;
Address:"Spatial Ecology and Epidemiology Group, University of Oxford, Oxford, UK. luigi.sedda@zoo.ox.ac.uk"
Journal Title:Proc Biol Sci
Year:2012
Volume:20120208
Issue:1737
Page Number:2354 - 2362
DOI: 10.1098/rspb.2011.2555
ISSN/ISBN:1471-2954 (Electronic) 0962-8452 (Print) 0962-8452 (Linking)
Abstract:"The 2006 bluetongue (BT) outbreak in northwestern Europe had devastating effects on cattle and sheep in that intensively farmed area. The role of wind in disease spread, through its effect on Culicoides dispersal, is still uncertain, and remains unquantified. We examine here the relationship between farm-level infection dates and wind speed and direction within the framework of a novel model involving both mechanistic and stochastic steps. We consider wind as both a carrier of host semio-chemicals, to which midges might respond by upwind flight, and as a transporter of the midges themselves, in a more or less downwind direction. For completeness, we also consider midge movement independent of wind and various combinations of upwind, downwind and random movements. Using stochastic simulation, we are able to explain infection onset at 94 per cent of the 2025 affected farms. We conclude that 54 per cent of outbreaks occurred through (presumably midge) movement of infections over distances of no more than 5 km, 92 per cent over distances of no more than 31 km and only 2 per cent over any greater distances. The modal value for all infections combined is less than 1 km. Our analysis suggests that previous claims for a higher frequency of long-distance infections are unfounded. We suggest that many apparent long-distance infections resulted from sequences of shorter-range infections; a 'stepping stone' effect. Our analysis also found that downwind movement (the only sort so far considered in explanations of BT epidemics) is responsible for only 39 per cent of all infections, and highlights the effective contribution to disease spread of upwind midge movement, which accounted for 38 per cent of all infections. The importance of midge flight speed is also investigated. Within the same model framework, lower midge active flight speed (of 0.13 rather than 0.5 m s(-1)) reduced virtually to zero the role of upwind movement, mainly because modelled wind speeds in the area concerned were usually greater than such flight speed. Our analysis, therefore, highlights the need to improve our knowledge of midge flight speed in field situations, which is still very poorly understood. Finally, the model returned an intrinsic incubation period of 8 days, in accordance with the values reported in the literature. We argue that better understanding of the movement of infected insect vectors is an important ingredient in the management of future outbreaks of BT in Europe, and other devastating vector-borne diseases elsewhere"
Keywords:"*Algorithms Animals Bluetongue/*epidemiology/*transmission Ceratopogonidae/*physiology/virology Computer Simulation Disease Outbreaks/*veterinary Europe/epidemiology Flight, Animal/*physiology Insect Vectors/*physiology/virology Models, Theoretical Rumina;"
Notes:"MedlineSedda, Luigi Brown, Heidi E Purse, Bethan V Burgin, Laura Gloster, John Rogers, David J eng BBS/B/00646/Biotechnology and Biological Sciences Research Council/United Kingdom Research Support, Non-U.S. Gov't England 2012/02/10 Proc Biol Sci. 2012 Jun 22; 279(1737):2354-62. doi: 10.1098/rspb.2011.2555. Epub 2012 Feb 8"

 
Back to top
 
Citation: El-Sayed AM 2025. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2025 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 10-01-2025