Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractHormone processing and membrane-bound proteinases in yeast    Next AbstractDesigning novel perlite-Fe(3)O(4)@SiO(2)@8-HQ-5-SA as a promising magnetic nanoadsorbent for competitive adsorption of multicomponent VOCs »

Chem Biodivers


Title:Comparative Study of the Essential Oil and Hydrosol Composition of Sweet Wormwood (Artemisia annua L.) from Serbia
Author(s):Acimovic M; Jeremic JS; Todosijevic M; Kiprovski B; Vidovic S; Vladic J; Pezo L;
Address:"Institute of Field and Vegetable Crops Novi Sad, Maksima Gorkog 30, 21000, Novi Sad, Serbia. University of Belgrade, Institute of Chemistry Technology and Metallurgy, Njegoseva 12, 11000, Belgrade, Serbia. University of Belgrade, Faculty of Chemistry, Studentski trg 16, 11000, Belgrade, Serbia. University of Novi Sad, Faculty of Technology, Bulevar cara Lazara 1, 21000, Novi Sad, Serbia. University of Belgrade, Institute of General and Physical Chemistry, Studentski trg 12, 11000, Belgrade, Serbia"
Journal Title:Chem Biodivers
Year:2022
Volume:20220215
Issue:3
Page Number:e202100954 -
DOI: 10.1002/cbdv.202100954
ISSN/ISBN:1612-1880 (Electronic) 1612-1872 (Linking)
Abstract:"The most abundant volatile compounds of sweet wormwood (Artemisia annua L.) essential oil were artemisia ketone (25.4 %) and trans-caryophyllene (10.2 %), followed by 1,8-cineole, camphor, germacrene D and beta-selinene. The major volatile compounds in the hydrosol were camphor (25.1 %), 1,8-cineole (20.5 %) and artemisia ketone (10.7 %), followed by trans-pinocarveol and yomogi alcohol. Tested essential oil was rich in oxygenated monoterpenes and sesquiterpene hydrocarbons, while the former were identified as the major class of volatile compounds in the hydrosol, due to higher water solubility. Classification of all sweet wormwood chemotypes, according to essential oil composition, in available literature (17 studies and 61 accessions) could be done according to four chemotypes: artemisia ketone+artemisia alcohol (most abundant), artemisia ketone, camphor and nonspecific chemotype. According to this classification, essential oil of sweet wormwood from this study belongs to artemisia ketone (content varied between 22.1 and 55.8 %). Bearing in mind that hydrosols are a by-product of industrial production of essential oils, and the fact that sweet wormwood hydrosol has high contents of camphor, 1,8-cineole and artemisia ketone, there is a great potential for the use of this aromatic plant primary processing waste product as a water replacement in cosmetic industry, beverages flavoring, for food preservation, as well as in post-harvest pre-storage treatments in organic agriculture"
Keywords:"*Artemisia *Artemisia annua Camphor Eucalyptol *Oils, Volatile Serbia 1, 8-cineole artemisia ketone trans-caryophyllene volatile compounds;"
Notes:"MedlineAcimovic, Milica Jeremic, Jovana Stankovic Todosijevic, Marina Kiprovski, Biljana Vidovic, Senka Vladic, Jelena Pezo, Lato eng 451-03-9/2021-14/200032/Ministry of Education, Science and Technological Development of the Republic of Serbia/ Switzerland 2022/02/17 Chem Biodivers. 2022 Mar; 19(3):e202100954. doi: 10.1002/cbdv.202100954. Epub 2022 Feb 15"

 
Back to top
 
Citation: El-Sayed AM 2025. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2025 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 09-01-2025