Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractKey Design Elements of Building Pressure Cycling for Evaluating Vapor Intrusion-A Literature Review    Next AbstractThe design of a phonoactograph suitable for study on the influence of pheromones on insect mobility »

Mol Ecol


Title:"Associations between Afrotropical bats, eukaryotic parasites, and microbial symbionts"
Author(s):Lutz HL; Gilbert JA; Dick CW;
Address:"Department of Pediatrics, University of California San Diego, La Jolla, CA, USA. Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA. Negaunee Integrative Research Center, Field Museum of Natural History, Chicago, IL, USA. Department of Biology, Western Kentucky University, Bowling Green, KY, USA"
Journal Title:Mol Ecol
Year:2022
Volume:20210802
Issue:7
Page Number:1939 - 1950
DOI: 10.1111/mec.16044
ISSN/ISBN:1365-294X (Electronic) 0962-1083 (Print) 0962-1083 (Linking)
Abstract:"Skin is the largest mammalian organ and the first defensive barrier against the external environment. The skin and fur of mammals can host a wide variety of ectoparasites, many of which are phylogenetically diverse, specialized, and specifically adapted to their hosts. Among hematophagous dipteran parasites, volatile organic compounds (VOCs) are known to serve as important attractants, leading parasites to compatible sources of blood meals. VOCs have been hypothesized to be mediated by host-associated bacteria, which may thereby indirectly influence parasitism. Host-associated bacteria may also influence parasitism directly, as has been observed in interactions between animal gut microbiota and malarial parasites. Hypotheses relating bacterial symbionts and eukaryotic parasitism have rarely been tested among humans and domestic animals, and to our knowledge have not been tested in wild vertebrates. In this study, we used Afrotropical bats, hematophagous ectoparasitic bat flies, and haemosporidian (malarial) parasites vectored by bat flies as a model to test the hypothesis that the vertebrate host microbiome is linked to parasitism in a wild system. We identified significant correlations between bacterial community composition of the skin and dipteran ectoparasite prevalence across four major bat lineages, as well as striking differences in skin microbial network characteristics between ectoparasitized and nonectoparasitized bats. We also identified links between the oral microbiome and presence of malarial parasites among miniopterid bats. Our results support the hypothesis that microbial symbionts may serve as indirect mediators of parasitism among eukaryotic hosts and parasites"
Keywords:Animals Bacteria/genetics *Chiroptera *Diptera Eukaryota Host-Parasite Interactions *Microbiota *Parasites Symbiosis Afrotropics Chiroptera Haemosporidia Hippoboscoidea bat flies bats malaria microbiome;
Notes:"MedlineLutz, Holly L Gilbert, Jack A Dick, Carl W eng Research Support, U.S. Gov't, Non-P.H.S. England 2021/06/29 Mol Ecol. 2022 Apr; 31(7):1939-1950. doi: 10.1111/mec.16044. Epub 2021 Aug 2"

 
Back to top
 
Citation: El-Sayed AM 2025. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2025 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 08-01-2025