Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous Abstract"Kinetic multi-layer model of film formation, growth, and chemistry (KM-FILM): Boundary layer processes, multi-layer adsorption, bulk diffusion, and heterogeneous reactions"    Next Abstract"Exploration and Evaluation of Secondary Metabolites from Trichoderma harzianum: GC-MS Analysis, Phytochemical Profiling, Antifungal and Antioxidant Activity Assessment" »

Environ Sci Process Impacts


Title:Effective mass accommodation for partitioning of organic compounds into surface films with different viscosities
Author(s):Lakey PSJ; Cummings BE; Waring MS; Morrison GC; Shiraiwa M;
Address:"Department of Chemistry, University of California, Irvine, CA 92697, USA. plakey@uci.edu. Department of Civil, Architectural and Environmental Engineering, Drexel University, PA 19104, USA. Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, NC, USA"
Journal Title:Environ Sci Process Impacts
Year:2023
Volume:20230920
Issue:9
Page Number:1464 - 1478
DOI: 10.1039/d3em00213f
ISSN/ISBN:2050-7895 (Electronic) 2050-7887 (Linking)
Abstract:"Indoor surfaces can act as reservoirs and reaction media influencing the concentrations and type of species that people are exposed to indoors. Mass accommodation and partitioning are impacted by the phase state and viscosity of indoor surface films. We developed the kinetic multi-layer model KM-FILM to simulate organic film formation and growth, but it is computationally expensive to couple such comprehensive models with indoor air box models. Recently, a novel effective mass accommodation coefficient (alpha(eff)) was introduced for efficient and effective treatments of gas-particle partitioning. In this study, we extended this approach to a film geometry with alpha(eff) as a function of penetration depth into the film, partitioning coefficient, bulk diffusivity, and condensed-phase reaction rate constant. Comparisons between KM-FILM and the alpha(eff) method show excellent agreement under most conditions, but with deviations before the establishment of quasi-equilibrium within the penetration depth. We found that the deposition velocity of species and overall film growth are impacted by bulk diffusivity in highly viscous films (D(b) approximately <10(-15) cm(2) s(-1)). Reactions that lead to non-volatile products can increase film thicknesses significantly, with the extent of film growth being dependent on the gas-phase concentration, rate coefficient, partitioning coefficient and diffusivity. Amorphous semisolid films with D(b) > approximately 10(-17)-10(-19) cm(2) s(-1) can be efficient SVOC reservoirs for compounds with higher partitioning coefficients as they can be released back to the gas phase over extended periods of time, while glassy solid films would not be able to act as reservoirs as gas-film partitioning is impeded"
Keywords:"Humans Viscosity *Volatile Organic Compounds/analysis *Air Pollution, Indoor/analysis Kinetics *Air Pollutants/analysis;"
Notes:"MedlineLakey, Pascale S J Cummings, Bryan E Waring, Michael S Morrison, Glenn C Shiraiwa, Manabu eng England 2023/08/10 Environ Sci Process Impacts. 2023 Sep 20; 25(9):1464-1478. doi: 10.1039/d3em00213f"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 27-12-2024