Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

BiochemtechIPM
Alphascents
Pherobio
InsectScience
E-Econex
Semiochemical
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractCyclooctane tropospheric degradation initiated by reaction with C1 atoms    Next AbstractThe allelochemical farnesene affects Arabidopsis thaliana root meristem altering auxin distribution »

Appl Spectrosc


Title:Electrospray Film Deposition for Solvent-Elimination Infrared Spectroscopy
Author(s):Arangio A; Delval C; Ruggeri G; Dudani N; Yazdani A; Takahama S;
Address:"1 ENAC/IIE Swiss Federal Institute of Technology Lausanne, Lausanne, Switzerland. 2 Current affiliation: European Patent Office, The Hague, Netherlands. 3 Current affiliation: World Health Organization, Geneva, Switzerland"
Journal Title:Appl Spectrosc
Year:2019
Volume:20190416
Issue:6
Page Number:638 - 652
DOI: 10.1177/0003702818821330
ISSN/ISBN:1943-3530 (Electronic) 0003-7028 (Linking)
Abstract:"The application of electrospray (ES) for quantitative transfer of analytes from solution to an internal reflection element for analysis by attenuated total reflection Fourier transform infrared (ATR FT-IR) spectroscopy has been developed in this work. The ES ATR FT-IR method is evaluated with non-volatile and semi-volatile organic and inorganic compounds dissolved in pure organic solvents or organics in a mixture with water. The technique demonstrates the capability for rapid solvent evaporation from dilute solutions, facilitating the creation of thin films that allow ATR FT-IR to generate transmission-mode-like spectra. Electrospray ATR FT-IR with multiple reflections displays a linear response ( R(2) = 0.95-0.99) in absorbance with the deposited mass and instrumental detection limit < 100 ng, which demonstrates potential for quantitative applications. The method is applicable when crystalline substances are present, even though the formation of particles restricts the upper limit of mass loadings relative to substances forming homogeneous films. In addition to the solvent, semi-volatile compounds can evaporate during the ES process; the magnitude of losses will depend on solution composition and temperature"
Keywords:Atr ft-ir Electrospray attenuated total reflection Fourier transform infrared infrared spectroscopy internal reflection particulate matter thin films;
Notes:"PubMed-not-MEDLINEArangio, Andrea Delval, Christophe Ruggeri, Giulia Dudani, Nikunj Yazdani, Amir Takahama, Satoshi eng 2019/04/17 Appl Spectrosc. 2019 Jun; 73(6):638-652. doi: 10.1177/0003702818821330. Epub 2019 Apr 16"

 
Back to top
 
Citation: El-Sayed AM 2025. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2025 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 24-01-2025