Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous Abstract"Pharmacology of Natural Volatiles and Essential Oils in Food, Therapy, and Disease Prophylaxis"    Next AbstractPervaporation in chemical analysis »

Food Microbiol


Title:Yeast-yeast interactions revealed by aromatic profile analysis of Sauvignon Blanc wine fermented by single or co-culture of non-Saccharomyces and Saccharomyces yeasts
Author(s):Sadoudi M; Tourdot-Marechal R; Rousseaux S; Steyer D; Gallardo-Chacon JJ; Ballester J; Vichi S; Guerin-Schneider R; Caixach J; Alexandre H;
Address:"UMRA 02 102 PAM laboratoire VALMIS, Institut Universitaire de la Vigne et du Vin Jules Guyot, Universite de Bourgogne, 21078 Dijon cedex, France"
Journal Title:Food Microbiol
Year:2012
Volume:20120713
Issue:2
Page Number:243 - 253
DOI: 10.1016/j.fm.2012.06.006
ISSN/ISBN:1095-9998 (Electronic) 0740-0020 (Linking)
Abstract:"There has been increasing interest in the use of selected non-Saccharomyces yeasts in co-culture with Saccharomyces cerevisiae. The main reason is that the multistarter fermentation process is thought to simulate indigenous fermentation, thus increasing wine aroma complexity while avoiding the risks linked to natural fermentation. However, multistarter fermentation is characterised by complex and largely unknown interactions between yeasts. Consequently the resulting wine quality is rather unpredictable. In order to better understand the interactions that take place between non-Saccharomyces and Saccharomyces yeasts during alcoholic fermentation, we analysed the volatile profiles of several mono-culture and co-cultures. Candida zemplinina, Torulaspora delbrueckii and Metschnikowia pulcherrima were used to conduct fermentations either in mono-culture or in co-culture with S. cerevisiae. Up to 48 volatile compounds belonging to different chemical families were quantified. For the first time, we show that C. zemplinina is a strong producer of terpenes and lactones. We demonstrate by means of multivariate analysis that different interactions exist between the co-cultures studied. We observed a synergistic effect on aromatic compound production when M. pulcherrima was in co-culture with S. cerevisiae. However a negative interaction was observed between C. zemplinina and S. cerevisiae, which resulted in a decrease in terpene and lactone content. These interactions are independent of biomass production. The aromatic profiles of T. delbrueckii and S. cerevisiae in mono-culture and in co-culture are very close, and are biomass-dependent, reflecting a neutral interaction. This study reveals that a whole family of compounds could be altered by such interactions. These results suggest that the entire metabolic pathway is affected by these interactions"
Keywords:Candida/genetics/isolation & purification/*metabolism Coculture Techniques Fermentation Metschnikowia/genetics/isolation & purification/*metabolism Saccharomyces/genetics/isolation & purification/*metabolism Volatile Organic Compounds/*metabolism Wine/ana;
Notes:"MedlineSadoudi, Mohand Tourdot-Marechal, Raphaelle Rousseaux, Sandrine Steyer, Damien Gallardo-Chacon, Joan-Josep Ballester, Jordi Vichi, Stefania Guerin-Schneider, Remi Caixach, Josep Alexandre, Herve eng Research Support, Non-U.S. Gov't England 2012/09/19 Food Microbiol. 2012 Dec; 32(2):243-53. doi: 10.1016/j.fm.2012.06.006. Epub 2012 Jul 13"

 
Back to top
 
Citation: El-Sayed AM 2025. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2025 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 14-01-2025