Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous Abstract[Determination of volatile organic compounds in atmospheric environment]    Next Abstract"Crk1, a novel Cdc2-related protein kinase, is required for hyphal development and virulence in Candida albicans" »

Curr Biol


Title:Condition dependence of male mortality drives the evolution of sex differences in longevity
Author(s):Chen HY; Maklakov AA;
Address:"Ageing Research Group, Department of Animal Ecology, Evolutionary Biology Centre, Uppsala University, 752 36 Uppsala, Sweden. Ageing Research Group, Department of Animal Ecology, Evolutionary Biology Centre, Uppsala University, 752 36 Uppsala, Sweden. Electronic address: alexei.maklakov@ebc.uu.se"
Journal Title:Curr Biol
Year:2014
Volume:20141009
Issue:20
Page Number:2423 - 2427
DOI: 10.1016/j.cub.2014.08.055
ISSN/ISBN:1879-0445 (Electronic) 0960-9822 (Linking)
Abstract:"Males and females age at different rates and have different life expectancies across the animal kingdom, but what causes the longevity 'gender gaps' remains one of the most fiercely debated puzzles among biologists and demographers. Classic theory predicts that the sex experiencing higher rate of extrinsic mortality evolves faster aging and reduced longevity. However, condition dependence of mortality can counter this effect by selecting against senescence in whole-organism performance. Contrary to the prevailing view but in line with an emerging new theory, we show that the evolution of sex difference in longevity depends on the factors that cause sex-specific mortality and cannot be predicted from the mortality rate alone. Experimental evolution in an obligately sexual roundworm, Caenorhabditis remanei, in which males live longer than females, reveals that sexual dimorphism in longevity erodes rapidly when the extrinsic mortality in males is increased at random. We thus experimentally demonstrate evolution of the sexual monomorphism in longevity in a sexually dimorphic organism. Strikingly, when extrinsic mortality is increased in a way that favors survival of fast-moving individuals, males evolve increased longevities, thereby widening the gender gap. Thus, sex-specific selection on whole-organism performance in males renders them less prone to the ravages of old age than females, despite higher rates of extrinsic mortality. Our results reconcile previous research with recent theoretical breakthroughs by showing that sexual dimorphism in longevity evolves rapidly and predictably as a result of the sex-specific interactions between environmental hazard and organism's condition"
Keywords:"Aging Animals Biological Evolution Caenorhabditis/*physiology Female Longevity/*physiology Male Pheromones Selection, Genetic Sex Factors;"
Notes:"MedlineChen, Hwei-yen Maklakov, Alexei A eng Research Support, Non-U.S. Gov't England 2014/10/14 Curr Biol. 2014 Oct 20; 24(20):2423-7. doi: 10.1016/j.cub.2014.08.055. Epub 2014 Oct 9"

 
Back to top
 
Citation: El-Sayed AM 2025. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2025 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 03-01-2025