Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractSingle-laboratory validation of a method for the determination of select volatile organic compounds in foods by using vacuum distillation with gas chromatography/mass spectrometry    Next Abstract"Yes, I am ready now: differential effects of paced versus unpaced mating on anxiety and central oxytocin release in female rats" »

BMC Biol


Title:Reciprocal diversification in a complex plant-herbivore-parasitoid food web
Author(s):Nyman T; Bokma F; Kopelke JP;
Address:"Faculty of Biosciences, University of Joensuu, FI-80101 Joensuu, Finland. Tommi.Nyman@joensuu.fi"
Journal Title:BMC Biol
Year:2007
Volume:20071101
Issue:
Page Number:49 -
DOI: 10.1186/1741-7007-5-49
ISSN/ISBN:1741-7007 (Electronic) 1741-7007 (Linking)
Abstract:"BACKGROUND: Plants, plant-feeding insects, and insect parasitoids form some of the most complex and species-rich food webs. According to the classic escape-and-radiate (EAR) hypothesis, these hyperdiverse communities result from coevolutionary arms races consisting of successive cycles of enemy escape, radiation, and colonization by new enemy lineages. It has also been suggested that 'enemy-free space' provided by novel host plants could promote host shifts by herbivores, and that parasitoids could similarly drive diversification of gall form in insects that induce galls on plants. Because these central coevolutionary hypotheses have never been tested in a phylogenetic framework, we combined phylogenetic information on willow-galling sawflies with data on their host plants, gall types, and enemy communities. RESULTS: We found that evolutionary shifts in host plant use and habitat have led to dramatic prunings of parasitoid communities, and that changes in gall phenotype can provide 'enemy-free morphospace' for millions of years even in the absence of host plant shifts. Some parasites have nevertheless managed to colonize recently-evolved gall types, and this has apparently led to adaptive speciation in several enemy groups. However, having fewer enemies does not in itself increase speciation probabilities in individual sawfly lineages, partly because the high diversity of the enemy community facilitates compensatory attack by remaining parasite taxa. CONCLUSION: Taken together, our results indicate that niche-dependent parasitism is a major force promoting ecological divergence in herbivorous insects, and that prey divergence can cause speciation in parasite lineages. However, the results also show that the EAR hypothesis is too simplistic for species-rich food webs: instead, diversification seems to be spurred by a continuous stepwise process, in which ecological and phenotypic shifts in prey lineages are followed by a lagged evolutionary response by some of the associated enemies"
Keywords:Animals Biological Evolution *Ecosystem *Food Chain *Genetic Speciation *Host-Parasite Interactions Hymenoptera/genetics Insecta/*genetics Phylogeny Plants/*genetics Predatory Behavior;
Notes:"MedlineNyman, Tommi Bokma, Folmer Kopelke, Jens-Peter eng Research Support, Non-U.S. Gov't England 2007/11/03 BMC Biol. 2007 Nov 1; 5:49. doi: 10.1186/1741-7007-5-49"

 
Back to top
 
Citation: El-Sayed AM 2025. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2025 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 06-01-2025