Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractThe yeast alpha-factor receptor: structural properties deduced from the sequence of the STE2 gene    Next AbstractThe smell of environmental change: Using floral scent to explain shifts in pollinator attraction »

J Anim Ecol


Title:Patterns of top-down control in a seagrass ecosystem: could a roving apex predator induce a behaviour-mediated trophic cascade?
Author(s):Burkholder DA; Heithaus MR; Fourqurean JW; Wirsing A; Dill LM;
Address:"Department of Biological Sciences, Marine Sciences Program, Florida International University, North Miami, FL, 33181, USA"
Journal Title:J Anim Ecol
Year:2013
Volume:20130603
Issue:6
Page Number:1192 - 1202
DOI: 10.1111/1365-2656.12097
ISSN/ISBN:1365-2656 (Electronic) 0021-8790 (Linking)
Abstract:"1. The loss of large-bodied herbivores and/or top predators has been associated with large-scale changes in ecosystems around the world, but there remain important questions regarding the contexts in which such changes are most likely and the mechanisms through which they occur, particularly in marine ecosystems. 2. We used long-term exclusion cages to examine the effects of large grazers (sea cows, Dugong dugon; sea turtles Chelonia mydas) on seagrass community structure, biomass and nutrient dynamics. Experiments were conducted in habitats with high risk of predation (interior of shallow banks) and lower risk (edges of banks) to elucidate whether nonconsumptive (risk) effects of tiger sharks (Galeocerdo cuvier), a roving predator, structure herbivore impacts on seagrasses. 3. In lower-risk habitats, excluding large herbivores resulted in increased leaf length for Cymodocea angustata and Halodule uninervis. C. angustata shoot densities nearly tripled when released from herbivory, while H. uninervis nearly disappeared from exclusion cages over the course of the study. 4. We found no support for the hypothesis that grazing increases seagrass nutrient content. Instead, phosphorus content was higher in seagrasses within exclosures. This pattern is consistent with decreased light availability in the denser C. angustata canopies that formed in exclosures, and may indicate that competition for light led to the decrease in H. uninervis. 5. Impacts of large grazers were consistent with a behaviour-mediated trophic cascade (BMTC) initiated by tiger sharks and mediated by risk-sensitive foraging by large grazers. 6, Our results suggest that large-bodied grazers likely played important roles in seagrass ecosystem dynamics historically and that roving predators are capable of initiating a BMTC. Conservation efforts in coastal ecosystems must account for such interactions or risk unintended consequences"
Keywords:"Animals Behavior, Animal/*physiology Biomass *Biota Dugong/physiology *Ecosystem *Feeding Behavior *Food Chain Poaceae/physiology Predatory Behavior Sharks/physiology Turtles/physiology Western Australia Chelonia mydas community dynamics competition dugon;"
Notes:"MedlineBurkholder, Derek A Heithaus, Michael R Fourqurean, James W Wirsing, Aaron Dill, Lawrence M eng Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S. England 2013/06/05 J Anim Ecol. 2013 Nov; 82(6):1192-202. doi: 10.1111/1365-2656.12097. Epub 2013 Jun 3"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 29-12-2024