Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractImaging neuronal responses in slice preparations of vomeronasal organ expressing a genetically encoded calcium sensor    Next AbstractThe host range of Aphis gossypii is dependent on aphid genetic background and feeding experience »

Front Physiol


Title:The Odorant Binding Protein 6 Expressed in Sensilla Chaetica Displays Preferential Binding Affinity to Host Plants Volatiles in Ectropis obliqua
Author(s):Ma L; Li Z; Zhang W; Cai X; Luo Z; Zhang Y; Chen Z;
Address:"Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science & Technology Normal University, Nanchang, China. Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China. Institute of Entomology, Jiangxi Agricultural University, Nanchang, China. State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China"
Journal Title:Front Physiol
Year:2018
Volume:20180517
Issue:
Page Number:534 -
DOI: 10.3389/fphys.2018.00534
ISSN/ISBN:1664-042X (Print) 1664-042X (Electronic) 1664-042X (Linking)
Abstract:"The monophagous tea geometrid Ectropis obliqua selectively feed on tea plants, requiring the specialized chemosensory system to forage for certain host. A deep insight into the molecular basis would accelerate the design of insect-behavior-modifying stimuli. In the present study, we focused on the odorant-binding protein 6 (EoblOBP6) with the high abundance in legs transcriptome of E. obliqua moths. qRT-PCR coupled with western blot analyses revealed the dual expression pattern of EoblOBP6 in antennae and legs. Cellular immunolocalization indicated that EoblOBP6 was predominantly labeled in the outer sensillum lymph of uniporous sensilla chaetica, which is not innervated by sensory neurons. No specific staining was observed in other sensillum types. The fluorescence competition assay showed a relatively narrow binding spectrum of recombinant EoblOBP6. EoblOBP6 could not only bind with intact tea plant volatiles benzaldehyde but also display high binding ability to nerolidol and alpha-farnesene which are tea plant volatiles dramatically induced by herbivore infestation. Besides, EoblOBP6 tightly bound to the aversive bitter alkaloid berberine. Taken together, EoblOBP6 displayed an unusual expression in sensilla chaetica, exhibited the potential involvement in olfaction and gustation, and may play a functional role in host location of female E. obliqua moths"
Keywords:Ectropis obliqua fluorescence competition assay immunolocalization odorant-binding protein sensilla chaetica;
Notes:"PubMed-not-MEDLINEMa, Long Li, Zhaoqun Zhang, Wanna Cai, Xiaoming Luo, Zongxiu Zhang, Yongjun Chen, Zongmao eng Switzerland 2018/06/06 Front Physiol. 2018 May 17; 9:534. doi: 10.3389/fphys.2018.00534. eCollection 2018"

 
Back to top
 
Citation: El-Sayed AM 2025. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2025 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 08-01-2025