Title: | Exhalation pattern changes during fasting and low dose glucose treatment in rats |
Author(s): | Fink T; Albrecht FW; Maurer F; Kleber A; Huppe T; Schnauber K; Wolf B; Baumbach JI; Volk T; Kreuer S; |
Address: | "Department of Anaesthesiology, Intensive Care and Pain Therapy, Saarland University Medical Center, Kirrbergerstrasse, 66421, Homburg, Saar, Germany, tobias.fink@uks.eu" |
DOI: | 10.1007/s00216-015-8602-9 |
ISSN/ISBN: | 1618-2650 (Electronic) 1618-2642 (Linking) |
Abstract: | "The analysis of exhaled metabolites has become a promising field of research in recent decades. Several volatile organic compounds reflecting metabolic disturbance and nutrition status have even been reported. These are particularly important for long-term measurements, as needed in medical research for detection of disease progression and therapeutic efficacy. In this context, it has become urgent to investigate the effect of fasting and glucose treatment for breath analysis. In the present study, we used a model of ventilated rats that fasted for 12 h prior to the experiment. Ten rats per group were randomly assigned for continuous intravenous infusion without glucose or an infusion including 25 mg glucose per 100 g per hour during an observation period of 12 h. Exhaled gas was analysed using multicapillary column ion-mobility spectrometry. Analytes were identified by the BS-MCC/IMS database (version 1209; B & S Analytik, Dortmund, Germany). Glucose infusion led to a significant increase in blood glucose levels (p < 0.05 at 4 h and thereafter) and cardiac output (p < 0.05 at 4 h and thereafter). During the observation period, 39 peaks were found collectively. There were significant differences between groups in the concentration of ten volatile organic compounds: p < 0.001 at 4 h and thereafter for isoprene, cyclohexanone, acetone, p-cymol, 2-hexanone, phenylacetylene, and one unknown compound, and p < 0.001 at 8 h and thereafter for 1-pentanol, 1-propanol, and 2-heptanol. Our results indicate that for long-term measurement, fasting and the withholding of glucose could contribute to changes of volatile metabolites in exhaled air" |
Keywords: | "Animals Blood Gas Analysis/methods Blood Glucose/*metabolism Breath Tests/*methods Exhalation/*physiology Fasting/*metabolism Glucose/*administration & dosage Male Rats Rats, Sprague-Dawley Volatile Organic Compounds/*analysis;" |
Notes: | "MedlineFink, Tobias Albrecht, Frederic W Maurer, Felix Kleber, Astrid Huppe, Tobias Schnauber, Kristina Wolf, Beate Baumbach, Jorg I Volk, Thomas Kreuer, Sascha eng Research Support, Non-U.S. Gov't Germany 2015/03/27 Anal Bioanal Chem. 2015 May; 407(13):3763-73. doi: 10.1007/s00216-015-8602-9. Epub 2015 Mar 26" |