Title: | Metabolomic selection for enhanced fruit flavor |
Author(s): | Colantonio V; Ferrao LFV; Tieman DM; Bliznyuk N; Sims C; Klee HJ; Munoz P; Resende MFR; |
Address: | "Horticultural Sciences Department, University of Florida, Gainesville, FL 32611. Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL 32611. Department of Biostatistics, University of Florida, Gainesville, FL 32611. Department of Statistics, University of Florida, Gainesville, FL 32611. Food Science and Human Nutrition Department, University of Florida, Gainesville, FL 32611. Horticultural Sciences Department, University of Florida, Gainesville, FL 32611; hjklee@ufl.edu p.munoz@ufl.edu mresende@ufl.edu" |
ISSN/ISBN: | 1091-6490 (Electronic) 0027-8424 (Print) 0027-8424 (Linking) |
Abstract: | "Although they are staple foods in cuisines globally, many commercial fruit varieties have become progressively less flavorful over time. Due to the cost and difficulty associated with flavor phenotyping, breeding programs have long been challenged in selecting for this complex trait. To address this issue, we leveraged targeted metabolomics of diverse tomato and blueberry accessions and their corresponding consumer panel ratings to create statistical and machine learning models that can predict sensory perceptions of fruit flavor. Using these models, a breeding program can assess flavor ratings for a large number of genotypes, previously limited by the low throughput of consumer sensory panels. The ability to predict consumer ratings of liking, sweet, sour, umami, and flavor intensity was evaluated by a 10-fold cross-validation, and the accuracies of 18 different models were assessed. The prediction accuracies were high for most attributes and ranged from 0.87 for sourness intensity in blueberry using XGBoost to 0.46 for overall liking in tomato using linear regression. Further, the best-performing models were used to infer the flavor compounds (sugars, acids, and volatiles) that contribute most to each flavor attribute. We found that the variance decomposition of overall liking score estimates that 42% and 56% of the variance was explained by volatile organic compounds in tomato and blueberry, respectively. We expect that these models will enable an earlier incorporation of flavor as breeding targets and encourage selection and release of more flavorful fruit varieties" |
Keywords: | "Blueberry Plants/genetics/*metabolism Consumer Behavior Fruit/*chemistry Gene Expression Regulation, Plant/physiology Humans Solanum lycopersicum/genetics/*metabolism Machine Learning *Plant Breeding Plant Proteins/genetics/*metabolism Taste Volatile Orga;" |
Notes: | "MedlineColantonio, Vincent Ferrao, Luis Felipe V Tieman, Denise M Bliznyuk, Nikolay Sims, Charles Klee, Harry J Munoz, Patricio Resende, Marcio F R Jr eng 2022/02/09 Proc Natl Acad Sci U S A. 2022 Feb 15; 119(7):e2115865119. doi: 10.1073/pnas.2115865119" |