Title: | YALI0C22088g from Yarrowia lipolytica catalyses the conversion of l-methionine into volatile organic sulfur-containing compounds |
Author(s): | Zhao QL; Wang ZL; Yang L; Zhang S; Jia KZ; |
Address: | "Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei University of Technology, Wuhan, 430068, China" |
ISSN/ISBN: | 1751-7915 (Electronic) 1751-7915 (Linking) |
Abstract: | "The enzymatic conversion of l-methionine (l-Met) into volatile organic sulfur-containing compounds (VOSCs) plays an important role in developing the characteristic aroma of foods. However, the mechanism for the direct conversion of l-Met into VOSCs is still unclear in yeast cells used to make food products. Here, we show that the transcription profile of YALI0C22088g from Yarrowia lipolytica correlates positively with l-Met addition. YALI0C22088g catalyses the gamma-elimination of l-Met, directly converting l-Met into VOSCs. YALI0C22088g also exhibits strong C-S lysis activities towards l-cystathionine and the other sulfur-containing compounds and forms a distinct cystathionine-gamma-lyase subgroup. We identified eight key amino acid residues in YALI0C22088g, and we inferred that the size of the tunnel and the charges carried by the entrance amino acid residue are the determinants for the enzymatic conversion of l-Met into VOSCs. These findings reveal the formation mechanism of VOSCs produced directly from l-Met via the demethiolation pathway in Yarrowia lipolytica, which provides a rationale for engineering the enzymatic conversion of l-Met into VOSCs and thus stimulates the enzymatic production of aroma compounds" |
Keywords: | Catalysis Methionine Sulfur *Volatile Organic Compounds *Yarrowia/genetics; |
Notes: | "MedlineZhao, Quan-Lu Wang, Zhu-Lin Yang, Lan Zhang, Sai Jia, Kai-Zhi eng 31570054/National Natural Science Foundation of China/ 21838002/National Natural Science Foundation of China/ Research Support, Non-U.S. Gov't 2021/04/02 Microb Biotechnol. 2021 Jul; 14(4):1462-1471. doi: 10.1111/1751-7915.13796. Epub 2021 Apr 1" |