Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

BiochemtechIPM
Alphascents
Pherobio
InsectScience
E-Econex
Semiochemical
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractSuppression of native Melaleuca ericifolia by the invasive Phragmites australis through allelopathic root exudates    Next AbstractPlant communication: mediated by individual or blended VOCs? »

Int J Food Microbiol


Title:Proteinase-producing halophilic lactic acid bacteria isolated from fish sauce fermentation and their ability to produce volatile compounds
Author(s):Udomsil N; Rodtong S; Tanasupawat S; Yongsawatdigul J;
Address:"Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, Thailand"
Journal Title:Int J Food Microbiol
Year:2010
Volume:20100524
Issue:3
Page Number:186 - 194
DOI: 10.1016/j.ijfoodmicro.2010.05.016
ISSN/ISBN:1879-3460 (Electronic) 0168-1605 (Linking)
Abstract:"Halophilic lactic acid bacteria were isolated from fish sauce mashes fermented at 1 to 12 months. Seven out of sixty-four isolates were selected according to their proteolytic activity and growth at 25% NaCl for characterization and investigation of volatile compound production. All selected isolates were Gram-positive cocci with pairs/tetrads and grew at 0-25% NaCl, pH 4.5-9.0. Results of 16S rRNA gene sequence analysis showed 99% homology to Tetragenococcus halophilus ATCC 33315. The restriction fragment length polymorphism (RFLP) patterns of all isolates were also similar to those of T. halophilus ATCC 33315. These isolates were, thus, identified as T. halophilus. All isolates hydrolyzed fish protein in the medium containing 25% NaCl. Intracellular aminopeptidase of 7 isolates exhibited the highest activity of 2.85-3.67 U/ml toward Ala-p-nitroanilide (Ala-pNA). T.halophilus strains MS33 and M11 showed the highest alanyl aminopeptidase activity (P<0.05), and produced histamine in mGYP broth containing 5 and 25% NaCl in the level of 6.62-22.55 and 13.14-20.39 mg/100ml, respectively. Predominant volatile compounds of fish broth containing 25% NaCl inoculated with T. halophilus MS33 and MRC5-5-2 were 1-propanol, 2-methylpropanal, and benzaldehyde, corresponding to major volatile compounds in fish sauce. T.halophilus appeared to play an important role in volatile compound formation during fish sauce fermentation"
Keywords:Animals Bacterial Proteins/*metabolism Enterococcaceae/classification/enzymology/*isolation & purification/*metabolism *Fermentation Fish Products/analysis/*microbiology Fishes Lactic Acid/*metabolism Molecular Sequence Data Peptide Hydrolases/*metabolism;
Notes:"MedlineUdomsil, Natteewan Rodtong, Sureelak Tanasupawat, Somboon Yongsawatdigul, Jirawat eng Research Support, Non-U.S. Gov't Netherlands 2010/06/15 Int J Food Microbiol. 2010 Jul 15; 141(3):186-94. doi: 10.1016/j.ijfoodmicro.2010.05.016. Epub 2010 May 24"

 
Back to top
 
Citation: El-Sayed AM 2025. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2025 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 27-01-2025