Title: | Volatile 1-octanol of tea (Camellia sinensis L.) fuels cell division and indole-3-acetic acid production in phylloplane isolate Pseudomonas sp. NEEL19 |
Author(s): | Neelakandan P; Young CC; Hameed A; Wang YN; Chen KN; Shen FT; |
Address: | "Department of Soil & Environmental Sciences, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung, 40227, Taiwan, ROC. Department of Soil & Environmental Sciences, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung, 40227, Taiwan, ROC. ccyoung@mail.nchu.edu.tw. Innovation and Development Center of Sustainable Agriculture (IDCSA), National Chung Hsing University, Taichung, 40227, Taiwan, ROC. ccyoung@mail.nchu.edu.tw. Yenepoya Research Centre, Yenepoya Deemed to be University, Mangalore, 575018, India. Department of Soil & Environmental Sciences, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung, 40227, Taiwan, ROC. ftshen@dragon.nchu.edu.tw. Innovation and Development Center of Sustainable Agriculture (IDCSA), National Chung Hsing University, Taichung, 40227, Taiwan, ROC. ftshen@dragon.nchu.edu.tw" |
DOI: | 10.1038/s41598-021-82442-7 |
ISSN/ISBN: | 2045-2322 (Electronic) 2045-2322 (Linking) |
Abstract: | "Tea leaves possess numerous volatile organic compounds (VOC) that contribute to tea's characteristic aroma. Some components of tea VOC were known to exhibit antimicrobial activity; however, their impact on bacteria remains elusive. Here, we showed that the VOC of fresh aqueous tea leaf extract, recovered through hydrodistillation, promoted cell division and tryptophan-dependent indole-3-acetic acid (IAA) production in Pseudomonas sp. NEEL19, a solvent-tolerant isolate of the tea phylloplane. 1-octanol was identified as one of the responsible volatiles stimulating cell division, metabolic change, swimming motility, putative pili/nanowire formation and IAA production, through gas chromatography-mass spectrometry, microscopy and partition petri dish culture analyses. The bacterial metabolic responses including IAA production increased under 1-octanol vapor in a dose-dependent manner, whereas direct-contact in liquid culture failed to elicit such response. Thus, volatile 1-octanol emitting from tea leaves is a potential modulator of cell division, colonization and phytohormone production in NEEL19, possibly influencing the tea aroma" |
Keywords: | 1-Octanol/analysis *Camellia sinensis/metabolism/microbiology Indoleacetic Acids/analysis Odorants/*analysis *Plant Leaves/metabolism/microbiology Pseudomonas/*metabolism Tea/*chemistry Volatile Organic Compounds/*analysis; |
Notes: | "MedlineNeelakandan, Poovarasan Young, Chiu-Chung Hameed, Asif Wang, Yu-Ning Chen, Kui-Nuo Shen, Fo-Ting eng Research Support, Non-U.S. Gov't England 2021/02/04 Sci Rep. 2021 Feb 2; 11(1):2788. doi: 10.1038/s41598-021-82442-7" |