Title: | "Pheromone gland-specific fatty-acyl reductase of the silkmoth, Bombyx mori" |
Author(s): | Moto K; Yoshiga T; Yamamoto M; Takahashi S; Okano K; Ando T; Nakata T; Matsumoto S; |
Address: | "RIKEN, Hirosawa 2-1, Wako, Saitama 351-0198, Japan" |
ISSN/ISBN: | 0027-8424 (Print) 1091-6490 (Electronic) 0027-8424 (Linking) |
Abstract: | "The C10-C18 unsaturated, acyclic, aliphatic compounds that contain an oxygenated functional group (alcohol, aldehyde, or acetate ester) are a major class of sex pheromones produced by female moths. In the biosynthesis of these pheromone components, the key enzyme required to produce the oxygenated functional groups is fatty-acyl reductase (FAR). This enzyme converts fatty-acyl pheromone precursors to their corresponding alcohols, which, depending on the moth species, can then be acetylated or oxidized to the corresponding aldehydes. Despite the significant role this enzyme has in generating the species-specific oxygenated constituents of lepidopteran sex pheromones, the enzyme has yet to be fully characterized and identified. In experiments designed to characterize a pheromone-gland-specific FAR in the silkmoth, Bombyx mori, we have isolated a cDNA clone encoding a protein homologous to a FAR from the desert shrub, Simmondsia chinensis, commonly known as jojoba. The deduced amino acid sequence of this clone predicts a 460-aa protein with a consensus NAD(P)H binding motif within the amino terminus. Northern blot analysis indicated that 2-kb transcripts of this gene were specifically expressed in the pheromone gland at 1 day before adult eclosion. Functional expression of this gene in the yeast Saccharomyces cerevisiae not only confirmed the long-chain FAR activity, but also indicated a distinct substrate specificity. Finally, the transformed yeast cells evoked typical mating behavior in male moths when cultured with the pheromone precursor fatty acid, (E,Z)-10,12-hexadecadienoic acid" |
Keywords: | "Alcohols/metabolism Aldehyde Oxidoreductases/*chemistry Amino Acid Motifs Amino Acid Sequence Animals Base Sequence Blotting, Northern Bombyx Cloning, Molecular DNA, Complementary/metabolism Female Gas Chromatography-Mass Spectrometry Male Molecular Seque;" |
Notes: | "MedlineMoto, Ken'ichi Yoshiga, Toyoshi Yamamoto, Masanobu Takahashi, Shunya Okano, Kazuhiro Ando, Tetsu Nakata, Tadashi Matsumoto, Shogo eng Research Support, Non-U.S. Gov't 2003/07/23 Proc Natl Acad Sci U S A. 2003 Aug 5; 100(16):9156-61. doi: 10.1073/pnas.1531993100. Epub 2003 Jul 18" |