Title: | "Stability of selected volatile breath constituents in Tedlar, Kynar and Flexfilm sampling bags" |
Author(s): | Mochalski P; King J; Unterkofler K; Amann A; |
Address: | "Breath Research Institute, Austrian Academy of Sciences, Rathausplatz 4, A-6850 Dornbirn, Austria. pawel.mochalski@ifj.edu.pl" |
ISSN/ISBN: | 1364-5528 (Electronic) 0003-2654 (Print) 0003-2654 (Linking) |
Abstract: | "The stability of 41 selected breath constituents in three types of polymer sampling bags, Tedlar, Kynar, and Flexfilm, was investigated using solid phase microextraction and gas chromatography mass spectrometry. The tested molecular species belong to different chemical classes (hydrocarbons, ketones, aldehydes, aromatics, sulphurs, esters, terpenes, etc.) and exhibit close-to-breath low ppb levels (3-12 ppb) with the exception of isoprene, acetone and acetonitrile (106 ppb, 760 ppb, 42 ppb respectively). Stability tests comprised the background emission of contaminants, recovery from dry samples, recovery from humid samples (RH 80% at 37 degrees C), influence of the bag's filling degree, and reusability. Findings yield evidence of the superiority of Tedlar bags over remaining polymers in terms of background emission, species stability (up to 7 days for dry samples), and reusability. Recoveries of species under study suffered from the presence of high amounts of water (losses up to 10%). However, only heavier volatiles, with molecular masses higher than 90, exhibited more pronounced losses (20-40%). The sample size (the degree of bag filling) was found to be one of the most important factors affecting the sample integrity. To sum up, it is recommended to store breath samples in pre-conditioned Tedlar bags up to 6 hours at the maximum possible filling volume. Among the remaining films, Kynar can be considered as an alternative to Tedlar; however, higher losses of compounds should be expected even within the first hours of storage. Due to the high background emission Flexfilm is not suitable for sampling and storage of samples for analyses aiming at volatiles at a low ppb level" |
Keywords: | Breath Tests/*methods Gas Chromatography-Mass Spectrometry Humans Humidity Limit of Detection Polyethylene Glycols/chemistry Polyethylene Terephthalates Polymers/chemistry Product Packaging Solid Phase Microextraction Specimen Handling Volatile Organic Co; |
Notes: | "MedlineMochalski, Pawel King, Julian Unterkofler, Karl Amann, Anton eng P 24736/FWF_/Austrian Science Fund FWF/Austria Research Support, Non-U.S. Gov't Validation Study England 2013/01/17 Analyst. 2013 Mar 7; 138(5):1405-18. doi: 10.1039/c2an36193k" |