Title: | Stress inducible proteomic changes in Capsicum annuum leaves |
Author(s): | Mahajan NS; Mishra M; Tamhane VA; Gupta VS; Giri AP; |
Address: | "Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR - National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008, MS, India. Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR - National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008, MS, India. Electronic address: ap.giri@ncl.res.in" |
DOI: | 10.1016/j.plaphy.2013.11.017 |
ISSN/ISBN: | 1873-2690 (Electronic) 0981-9428 (Linking) |
Abstract: | "Herbivore attack induces defense responses in plants, activating several signaling cascades. As a result, molecules deterrent to the herbivores are produced and accumulated in plants. Expression of defense mechanism/traits requires reorganization of the plant metabolism, redirecting the resources otherwise meant for growth. In the present work, protein profile of Capsicum annuum leaves was examined after herbivore attack/induction. Majority of proteins identified as differentially accumulated, were having roles in redox metabolism and photosynthesis. For example, superoxide dismutase and NADP oxidoreductase were upregulated by 10- and 6-fold while carbonic anhydrase and fructose-1,6-bisphosphatase were downregulated by 9- and 4-fold, respectively. Also, superoxide dismutase, NADPH quinone oxidoreductase and NADP dependent isocitrate dehydrogenase transcripts showed a higher accumulation in induced leaf tissues at early time points. In general, proteins having role in defense and damage repair were upregulated while those involved in photosynthesis appeared downregulated. Thus metabolic reconfiguration to balance defense and tolerance was evident in the stress-induced leaves" |
Keywords: | "Capsicum/*metabolism Electrophoresis, Gel, Two-Dimensional Plant Proteins/*metabolism *Proteomics *Stress, Physiological 2-de Capsicum annuum Et Ethylene Ja Jasmonic acid Os Oral secretion Oxidative stress Ros Reactive oxygen species Ribulose-1, 5-bisphosp;" |
Notes: | "MedlineMahajan, Neha S Mishra, Manasi Tamhane, Vaijayanti A Gupta, Vidya S Giri, Ashok P eng Research Support, Non-U.S. Gov't France 2013/12/10 Plant Physiol Biochem. 2014 Jan; 74:212-7. doi: 10.1016/j.plaphy.2013.11.017. Epub 2013 Nov 25" |