Title: | Facile hyphenation of gas chromatography and a microcantilever array sensor for enhanced selectivity |
Author(s): | Chapman PJ; Vogt F; Dutta P; Datskos PG; Devault GL; Sepaniak MJ; |
Address: | "Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996-1600, USA" |
ISSN/ISBN: | 0003-2700 (Print) 0003-2700 (Linking) |
Abstract: | "The very simple coupling of a standard, packed-column gas chromatograph with a microcantilever array (MCA) is demonstrated for enhanced selectivity and potential analyte identification in the analysis of volatile organic compounds (VOCs). The cantilevers in MCAs are differentially coated on one side with responsive phases (RPs) and produce bending responses of the cantilevers due to analyte-induced surface stresses. Generally, individual components are difficult to elucidate when introduced to MCA systems as mixtures, although pattern recognition techniques are helpful in identifying single components, binary mixtures, or composite responses of distinct mixtures (e.g., fragrances). In the present work, simple test VOC mixtures composed of acetone, ethanol, and trichloroethylene (TCE) in pentane and methanol and acetonitrile in pentane are first separated using a standard gas chromatograph and then introduced into a MCA flow cell. Significant amounts of response diversity to the analytes in the mixtures are demonstrated across the RP-coated cantilevers of the array. Principal component analysis is used to demonstrate that only three components of a four-component VOC mixture could be identified without mixture separation. Calibration studies are performed, demonstrating a good linear response over 2 orders of magnitude for each component in the primary study mixture. Studies of operational parameters including column temperature, column flow rate, and array cell temperature are conducted. Reproducibility studies of VOC peak areas and peak heights are also carried out showing RSDs of less than 4 and 3%, respectively, for intra-assay studies. Of practical significance is the facile manner by which the hyphenation of a mature separation technique and the burgeoning sensing approach is accomplished, and the potential to use pattern recognition techniques with MCAs as a new type of detector for chromatography with analyte-identifying capabilities" |
Keywords: | "Acetone/analysis Acetonitriles/analysis Biosensing Techniques/*methods Chromatography, Gas/*methods Ethanol/analysis Methanol/analysis Organic Chemicals/*analysis Pentanes/*analysis/*chemistry Principal Component Analysis Reproducibility of Results Sensit;" |
Notes: | "MedlineChapman, Peter J Vogt, Frank Dutta, Pampa Datskos, Panos G Devault, Gerald L Sepaniak, Michael J eng Research Support, Non-U.S. Gov't 2006/12/30 Anal Chem. 2007 Jan 1; 79(1):364-70. doi: 10.1021/ac061389x" |