Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractUnderstanding heterogeneity among individuals who smoke cigarettes and vape: assessment of biomarkers of exposure and potential harm among subpopulations from the PATH Wave 1 Data    Next AbstractRice Grain Quality Benchmarking Through Profiling of Volatiles and Metabolites in Grains Using Gas Chromatography Mass Spectrometry »

Appl Environ Microbiol


Title:Yeast Volatomes Differentially Affect Larval Feeding in an Insect Herbivore
Author(s):Ljunggren J; Borrero-Echeverry F; Chakraborty A; Lindblom TUT; Hedenstrom E; Karlsson M; Witzgall P; Bengtsson M;
Address:"Department of Chemical Engineering, Mid Sweden University, Sundsvall, Sweden. Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden. Department of Horticulture, Swedish University of Agricultural Sciences, Alnarp, Sweden. Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden peter.witzgall@slu.se marie.bengtsson@slu.se"
Journal Title:Appl Environ Microbiol
Year:2019
Volume:20191016
Issue:21
Page Number: -
DOI: 10.1128/AEM.01761-19
ISSN/ISBN:1098-5336 (Electronic) 0099-2240 (Print) 0099-2240 (Linking)
Abstract:"Yeasts form mutualistic interactions with insects. Hallmarks of this interaction include provision of essential nutrients, while insects facilitate yeast dispersal and growth on plant substrates. A phylogenetically ancient chemical dialogue coordinates this interaction, where the vocabulary, the volatile chemicals that mediate the insect response, remains largely unknown. Here, we used gas chromatography-mass spectrometry, followed by hierarchical cluster and orthogonal partial least-squares discriminant analyses, to profile the volatomes of six Metschnikowia spp., Cryptococcus nemorosus, and brewer's yeast (Saccharomyces cerevisiae). The yeasts, which are all found in association with insects feeding on foliage or fruit, emit characteristic, species-specific volatile blends that reflect the phylogenetic context. Species specificity of these volatome profiles aligned with differential feeding of cotton leafworm (Spodoptera littoralis) larvae on these yeasts. Bioactivity correlates with yeast ecology; phylloplane species elicited a stronger response than fruit yeasts, and larval discrimination may provide a mechanism for establishment of insect-yeast associations. The yeast volatomes contained a suite of insect attractants known from plant and especially floral headspace, including (Z)-hexenyl acetate, ethyl (2E,4Z)-deca-2,4-dienoate (pear ester), (3E)-4,8-dimethylnona-1,3,7-triene (DMNT), linalool, alpha-terpineol, beta-myrcene, or (E,E)-alpha-farnesene. A wide overlap of yeast and plant volatiles, notably floral scents, further emphasizes the prominent role of yeasts in plant-microbe-insect relationships, including pollination. The knowledge of insect-yeast interactions can be readily brought to practical application, as live yeasts or yeast metabolites mediating insect attraction provide an ample toolbox for the development of sustainable insect management.IMPORTANCE Yeasts interface insect herbivores with their food plants. Communication depends on volatile metabolites, and decoding this chemical dialogue is key to understanding the ecology of insect-yeast interactions. This study explores the volatomes of eight yeast species which have been isolated from foliage, from flowers or fruit, and from plant-feeding insects. These yeasts each release a rich bouquet of volatile metabolites, including a suite of known insect attractants from plant and floral scent. This overlap underlines the phylogenetic dimension of insect-yeast associations, which according to the fossil record long predate the appearance of flowering plants. Volatome composition is characteristic for each species, aligns with yeast taxonomy, and is further reflected by a differential behavioral response of cotton leafworm larvae, which naturally feed on foliage of a wide spectrum of broad-leaved plants. Larval discrimination may establish and maintain associations with yeasts and is also a substrate for designing sustainable insect management techniques"
Keywords:Acyclic Monoterpenes Animals Cryptococcus/physiology Cyclohexane Monoterpenes Flowers Fruit Gas Chromatography-Mass Spectrometry Herbivory/*physiology Host Microbial Interactions Insecta/*microbiology Larva/*growth & development/*microbiology Metabolome M;
Notes:"MedlineLjunggren, Joel Borrero-Echeverry, Felipe Chakraborty, Amrita Lindblom, Tobias U T Hedenstrom, Erik Karlsson, Maria Witzgall, Peter Bengtsson, Marie eng Research Support, Non-U.S. Gov't 2019/08/25 Appl Environ Microbiol. 2019 Oct 16; 85(21):e01761-19. doi: 10.1128/AEM.01761-19. Print 2019 Nov 1"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 27-12-2024