Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractTheory and validation of solid-phase microextraction and needle trap devices for aerosol sample    Next Abstract"A Survey of 42 Semi-Volatile Organic Contaminants in Groundwater along the Grand Canal from Hangzhou to Beijing, East China" »

PLoS One


Title:Pathways of Leymus chinensis Individual Aboveground Biomass Decline in Natural Semiarid Grassland Induced by Overgrazing: A Study at the Plant Functional Trait Scale
Author(s):Li X; Liu Z; Wang Z; Wu X; Li X; Hu J; Shi H; Guo F; Zhang Y; Hou X;
Address:"Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Ministry of Agriculture Key Laboratory of Grassland Resources and Utilization, Hohhot, China; Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China. Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Ministry of Agriculture Key Laboratory of Grassland Resources and Utilization, Hohhot, China. Experimental Center of Desert Forestry, China Academy of Forestry, Dengkou, China"
Journal Title:PLoS One
Year:2015
Volume:20150505
Issue:5
Page Number:e0124443 -
DOI: 10.1371/journal.pone.0124443
ISSN/ISBN:1932-6203 (Electronic) 1932-6203 (Linking)
Abstract:"Natural grassland productivity, which is based on an individual plant's aboveground biomass (AB) and its interaction with herbivores, can obviously affect terrestrial ecosystem services and the grassland's agricultural production. As plant traits have been linked to both AB and ecosystem success, they may provide a useful approach to understand the changes in individual plants and grassland productivity in response to grazing on a generic level. Unfortunately, the current lack of studies on how plant traits affect AB affected by herbivores leaves a major gap in our understanding of the mechanism of grassland productivity decline. This study, therefore, aims to analyze the paths of overgrazing-induced decline in the individual AB of Leymus chinensis (the dominant species of meadow-steppe grassland in northern China) on a plant functional trait scale. Using a paired-sampling approach, we compared the differences in the functional traits of L. chinensis in long-term grazing-excluded and experimental grazing grassland plots over a continuous period of approximately 20 years (located in meadow steppe lands in Hailar, Inner Mongolia, China). We found a highly significant decline in the individual height and biomass (leaf, stem, and the whole plant) of L. chinensis as a result of overgrazing. Biomass allocation and leaf mass per unit area were significantly affected by the variation in individual size. Grazing clearly enhanced the sensitivity of the leaf-to-stem biomass ratio in response to variation in individual size. Moreover, using a method of standardized major axis estimation, we found that the biomass in the leaves, stems, and the plant as a whole had highly significant allometric scaling with various functional traits. Also, the slopes of the allometric equations of these relationships were significantly altered by grazing. Therefore, a clear implication of this is that grazing promotes an asymmetrical response of different plant functional traits to variation in individual plant size, which influences biomass indirectly. Furthermore, we detected paths of individual AB decline in L. chinensis induced by grazing by fitting to a structural equation model. These results indicate that grazing causes AB decline primarily through a 'bottom-up' effect on plant height and stem traits. However, leaf traits, via the process of allometric scaling, affect plant AB indirectly"
Keywords:Animals Biomass Ecosystem Herbivory Poaceae/*physiology;
Notes:"MedlineLi, Xiliang Liu, Zhiying Wang, Zhen Wu, Xinhong Li, Xinle Hu, Jing Shi, Hongxiao Guo, Fenghui Zhang, Yong Hou, Xiangyang eng Research Support, Non-U.S. Gov't 2015/05/06 PLoS One. 2015 May 5; 10(5):e0124443. doi: 10.1371/journal.pone.0124443. eCollection 2015"

 
Back to top
 
Citation: El-Sayed AM 2025. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2025 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 13-01-2025