Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous Abstract[Studies of Dynamic Adsorption Behavior of VOCs on Biochar Modified by Ultraviolet Irradiation]    Next AbstractShifts in diversity and function of the bacterial community during the manufacture of Fu brick tea »

Front Physiol


Title:RNA-Seq Analyses of Midgut and Fat Body Tissues Reveal the Molecular Mechanism Underlying Spodoptera litura Resistance to Tomatine
Author(s):Li Q; Sun Z; Shi Q; Wang R; Xu C; Wang H; Song Y; Zeng R;
Address:"College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, China. State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fuzhou, China. College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China"
Journal Title:Front Physiol
Year:2019
Volume:20190122
Issue:
Page Number:8 -
DOI: 10.3389/fphys.2019.00008
ISSN/ISBN:1664-042X (Print) 1664-042X (Electronic) 1664-042X (Linking)
Abstract:"Plants produce secondary metabolites to provide chemical defense against herbivorous insects, whereas insects can induce the expression of detoxification metabolism-related unigenes in counter defense to plant xenobiotics. Tomatine is an important secondary metabolite in tomato (Lycopersicon esculentum L.) that can protect the plant from bacteria and insects. However, the mechanism underlying the adaptation of Spodoptera litura, a major tomato pest, to tomatine in tomato is largely unclear. In this study, we first found that the levels of tomatine in tomatoes subjected to S. litura treatment were significantly increased. Second, we confirmed the inhibitory effect of tomatine on S. litura by adding moderate amounts of commercial tomatine to an artificial diet. Then, we utilized RNA-Seq to compare the differentially expressed genes (DEGs) in the midgut and fat body tissues of S. litura exposed to an artificial diet supplemented with tomatine. In total, upon exposure to tomatine, 134 and 666 genes were upregulated in the S. litura midgut and fat body, respectively. These DEGs comprise a significant number of detoxification-related genes, including 7 P450 family genes, 8 glutathione S-transferases (GSTs) genes, 6 ABC transport enzyme genes, 9 UDP-glucosyltransferases genes and 3 carboxylesterases genes. Moreover, KEGG analysis demonstrated that the upregulated genes were enriched in xenobiotic metabolism by cytochrome P450s, ABC transporters and drug metabolism by other enzymes. Furthermore, as numerous GSTs were induced by tomatine in S. litura, we chose one gene, namely GSTS1, to confirm the detoxification function on tomatine. Expression profiling revealed that GSTS1 transcripts were mainly expressed in larvae, and the levels were the highest in the midgut. Finally, when larvae were injected with double-stranded RNA specific to GSTS1, the transcript levels in the midgut and fat body decreased, and the negative effect of the plant xenobiotic tomatine on larval growth was magnified. These results preliminarily clarified the molecular mechanism underlying the resistance of S. litura to tomatine, establishing a foundation for subsequent pest control"
Keywords:Gsts1 RNA-sequencing RNAi Spodoptera litura tomatine;
Notes:"PubMed-not-MEDLINELi, Qilin Sun, Zhongxiang Shi, Qi Wang, Rumeng Xu, Cuicui Wang, Huanhuan Song, Yuanyuan Zeng, Rensen eng Switzerland 2019/02/07 Front Physiol. 2019 Jan 22; 10:8. doi: 10.3389/fphys.2019.00008. eCollection 2019"

 
Back to top
 
Citation: El-Sayed AM 2025. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2025 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 08-01-2025