Title: | Trans-generational inheritance of herbivory-induced phenotypic changes in Brassica rapa |
Author(s): | Kellenberger RT; Desurmont GA; Schluter PM; Schiestl FP; |
Address: | "Department of Systematic and Evolutionary Botany, University of Zurich, Zollikerstrasse 107, CH-8008, Zurich, Switzerland. roman.kellenberger@uzh.ch. Institute of Biology, University of Neuchatel, Avenue du 1er-Mars 26, CH-2000, Neuchatel, Switzerland. EBCL USDA ARS, Campus international de Baillarguet, 34980, Montferrier sur lez, France. Department of Systematic and Evolutionary Botany, University of Zurich, Zollikerstrasse 107, CH-8008, Zurich, Switzerland" |
DOI: | 10.1038/s41598-018-21880-2 |
ISSN/ISBN: | 2045-2322 (Electronic) 2045-2322 (Linking) |
Abstract: | "Biotic stress can induce plastic changes in fitness-relevant plant traits. Recently, it has been shown that such changes can be transmitted to subsequent generations. However, the occurrence and extent of transmission across different types of traits is still unexplored. Here, we assessed the emergence and transmission of herbivory-induced changes in Brassica rapa and their impact on interactions with insects. We analysed changes in morphology and reproductive traits as well as in flower and leaf volatile emission during two generations with leaf herbivory by Mamestra brassicae and Pieris brassicae and two subsequent generations without herbivory. Herbivory induced changes in all trait types, increasing attractiveness of the plants to the parasitoid wasp Cotesia glomerata and decreasing visitation by the pollinator Bombus terrestris, a potential trade-off. While changes in floral and leaf volatiles disappeared in the first generation after herbivory, some changes in morphology and reproductive traits were still measurable two generations after herbivory. However, neither parasitoids nor pollinators further discriminated between groups with different past treatments. Our results suggest that transmission of herbivore-induced changes occurs preferentially in resource-limited traits connected to plant growth and reproduction. The lack of alterations in plant-insect interactions was likely due to the transient nature of volatile changes" |
Keywords: | Animals Brassica rapa/anatomy & histology/*genetics/metabolism/parasitology Ecosystem Flowers/anatomy & histology/genetics/metabolism/parasitology Herbivory/*physiology *Host-Parasite Interactions *Inheritance Patterns Lepidoptera/physiology Moths/physiol; |
Notes: | "MedlineKellenberger, Roman T Desurmont, Gaylord A Schluter, Philipp M Schiestl, Florian P eng Research Support, Non-U.S. Gov't England 2018/02/25 Sci Rep. 2018 Feb 23; 8(1):3536. doi: 10.1038/s41598-018-21880-2" |