Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractTungsten Disulfide Nanotube-Modified Conductive Paper-Based Chemiresistive Sensor for the Application in Volatile Organic Compounds' Detection    Next AbstractTreatment of VOCs with molecular sieve catalysts in regenerative catalytic oxidizer »

Methods Cell Biol


Title:Swimming upstream: identifying proteomic signals that drive transcriptional changes using the interactome and multiple '-omics' datasets
Author(s):Huang SS; Fraenkel E;
Address:"Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA"
Journal Title:Methods Cell Biol
Year:2012
Volume:110
Issue:
Page Number:57 - 80
DOI: 10.1016/B978-0-12-388403-9.00003-5
ISSN/ISBN:0091-679X (Print) 0091-679X (Linking)
Abstract:"Signaling and transcription are tightly integrated processes that underlie many cellular responses to the environment. A network of signaling events, often mediated by post-translational modification on proteins, can lead to long-term changes in cellular behavior by altering the activity of specific transcriptional regulators and consequently the expression level of their downstream targets. As many high-throughput, '-omics' methods are now available that can simultaneously measure changes in hundreds of proteins and thousands of transcripts, it should be possible to systematically reconstruct cellular responses to perturbations in order to discover previously unrecognized signaling pathways. This chapter describes a computational method for discovering such pathways that aims to compensate for the varying levels of noise present in these diverse data sources. Based on the concept of constraint optimization on networks, the method seeks to achieve two conflicting aims: (1) to link together many of the signaling proteins and differentially expressed transcripts identified in the experiments 'constraints' using previously reported protein-protein and protein-DNA interactions, while (2) keeping the resulting network small and ensuring it is composed of the highest confidence interactions 'optimization'. A further distinctive feature of this approach is the use of transcriptional data as evidence of upstream signaling events that drive changes in gene expression, rather than as proxies for downstream changes in the levels of the encoded proteins. We recently demonstrated that by applying this method to phosphoproteomic and transcriptional data from the pheromone response in yeast, we were able to recover functionally coherent pathways and to reveal many components of the cellular response that are not readily apparent in the original data. Here, we provide a more detailed description of the method, explore the robustness of the solution to the noise level of input data and discuss the effect of parameter values"
Keywords:"Algorithms Base Sequence Databases, Protein Fungal Proteins/*genetics/metabolism Gene Expression Profiling *Gene Expression Regulation, Fungal Molecular Sequence Data Pheromones/genetics/metabolism Phosphoproteins/genetics/metabolism Proteomics/*methods R;"
Notes:"MedlineHuang, Shao-shan Carol Fraenkel, Ernest eng GM089903/GM/NIGMS NIH HHS/ R01 GM089903/GM/NIGMS NIH HHS/ U54 CA112967/CA/NCI NIH HHS/ P30 ES002109/ES/NIEHS NIH HHS/ U54-CA112967/CA/NCI NIH HHS/ Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't 2012/04/10 Methods Cell Biol. 2012; 110:57-80. doi: 10.1016/B978-0-12-388403-9.00003-5"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 27-12-2024