Title: | "Spectroscopic sensitivity of real-time, rapidly induced phytochemical change in response to damage" |
Author(s): | Couture JJ; Serbin SP; Townsend PA; |
Address: | "Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, 1630 Linden Dr, Madison, WI 53705, USA" |
ISSN/ISBN: | 1469-8137 (Electronic) 0028-646X (Linking) |
Abstract: | "An ecological consequence of plant-herbivore interactions is the phytochemical induction of defenses in response to insect damage. Here, we used reflectance spectroscopy to characterize the foliar induction profile of cardenolides in Asclepias syriaca in response to damage, tracked in vivo changes and examined the influence of multiple plant traits on cardenolide concentrations. Foliar cardenolide concentrations were measured at specific time points following damage to capture their induction profile. Partial least-squares regression (PLSR) modeling was employed to calibrate cardenolide concentrations to reflectance spectroscopy. In addition, subsets of plants were either repeatedly sampled to track in vivo changes or modified to reduce latex flow to damaged areas. Cardenolide concentrations and the induction profile of A. syriaca were well predicted using models derived from reflectance spectroscopy, and this held true for repeatedly sampled plants. Correlations between cardenolides and other foliar-related variables were weak or not significant. Plant modification for latex reduction inhibited an induced cardenolide response. Our findings show that reflectance spectroscopy can characterize rapid phytochemical changes in vivo. We used reflectance spectroscopy to identify the mechanisms behind the production of plant secondary metabolites, simultaneously characterizing multiple foliar constituents. In this case, cardenolide induction appears to be largely driven by enhanced latex delivery to leaves following damage" |
Keywords: | "Analysis of Variance Asclepias/*chemistry Cardenolides/*analysis *Computer Systems Nitrogen/metabolism Plant Leaves/anatomy & histology/chemistry Reproducibility of Results Spectrum Analysis/*methods *Stress, Mechanical;" |
Notes: | "MedlineCouture, John J Serbin, Shawn P Townsend, Philip A eng Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S. England 2013/02/07 New Phytol. 2013 Apr; 198(1):311-319. doi: 10.1111/nph.12159. Epub 2013 Feb 5" |