Title: | Red mud-based catalysts for the catalytic removal of typical air pollutants: A review |
Address: | "State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China. State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China; Beijing Center for Environmental Pollution Control and Resource Recovery, Beijing University of Chemical Technology, Beijing 100029, China; Beijing Key Laboratory of Energy Environmental Catalysis, Beijing University of Chemical Technology, Beijing 100029, China. Electronic address: liuzm@mail.buct.edu.cn" |
DOI: | 10.1016/j.jes.2022.06.027 |
ISSN/ISBN: | 1001-0742 (Print) 1001-0742 (Linking) |
Abstract: | "Red mud, as a solid waste produced during the alumina production, can cause severe eco-environmental pollution and health risks to human. Therefore, the resourcing of this type of solid waste is an effective way for the sustainable development. This paper reviews the recent progress on red mud-based catalysts for the removal of typical air pollutants, such as the catalytic reduction of nitrogen oxides (NO(x)) by NH(3) (NH(3)-SCR) and the catalytic oxidation of CO and volatile organic compounds (VOCs). The factors influencing the catalytic performance and the structure-activity relationship have been discussed. Future prospects and directions for the development of such catalysts are also proposed. This review would benefit for the high value-added utilizations of red mud in mitigating atmospheric pollutions" |
Keywords: | Humans *Air Pollutants Solid Waste Catalysis Nitrogen Oxides/analysis Oxidation-Reduction Ammonia Air pollutants Catalyst Catalytic oxidation Nh(3)-scr Red mud; |
Notes: | "MedlineChen, Jiawei Wang, Yao Liu, Zhiming eng Review Netherlands 2022/12/16 J Environ Sci (China). 2023 May; 127:628-640. doi: 10.1016/j.jes.2022.06.027. Epub 2022 Jul 2" |