Title: | HS-SPME-GC-MS Analyses of Volatiles in Plant Populations-Quantitating Compound x Individual Matrix Effects |
Author(s): | Burzynski-Chang EA; Ryona I; Reisch BI; Gonda I; Foolad MR; Giovannoni JJ; Sacks GL; |
Address: | "Department of Food Science, Stocking Hall, Cornell University, Ithaca, NY 14853, USA. eab54@cornell.edu. Department of Food Science, Stocking Hall, Cornell University, Ithaca, NY 14853, USA. ir45@cornell.edu. Horticulture Section, School of Integrative Plant Science, New York State Agricultural Experiment Station, Cornell University, Geneva, NY 14456, USA. bir1@cornell.edu. Boyce Thompson Institute for Plant Science, Ithaca, NY 14853, USA. itaygonda@gmail.com. Department of Plant Science, Pennsylvania State University, University Park, PA 16802, USA. james.giovannoni@ars.usda.gov. Boyce Thompson Institute for Plant Science, Ithaca, NY 14853, USA. mrf5@psu.edu. Department of Food Science, Stocking Hall, Cornell University, Ithaca, NY 14853, USA. gls9@cornell.edu" |
DOI: | 10.3390/molecules23102436 |
ISSN/ISBN: | 1420-3049 (Electronic) 1420-3049 (Linking) |
Abstract: | "Headspace solid-phase microextraction (HS-SPME) coupled to gas chromatography(-)mass spectrometry (GC-MS) is widely employed for volatile analyses of plants, including mapping populations used in plant breeding research. Studies often employ a single internal surrogate standard, even when multiple analytes are measured, with the assumption that any relative changes in matrix effects among individuals would be similar for all compounds, i.e., matrix effects do not show Compound x Individual interactions. We tested this assumption using individuals from two plant populations: an interspecific grape (Vitis spp.) mapping population (n = 140) and a tomato (Solanum spp.) recombinant inbred line (RIL) population (n = 148). Individual plants from the two populations were spiked with a cocktail of internal standards (n = 6, 9, respectively) prior to HS-SPME-GC-MS. Variation in the relative responses of internal standards indicated that Compound x Individual interactions exist but were different between the two populations. For the grape population, relative responses among pairs of internal standards varied considerably among individuals, with a maximum of 249% relative standard deviation (RSD) for the pair of [U(13)C]hexanal and [U(13)C]hexanol. However, in the tomato population, relative responses of internal standard pairs varied much less, with pairwise RSDs ranging from 8% to 56%. The approach described in this paper could be used to evaluate the suitability of using surrogate standards for HS-SPME-GC-MS studies in other plant populations" |
Keywords: | Gas Chromatography-Mass Spectrometry Solanum lycopersicum/*chemistry Plant Breeding Plant Extracts/chemistry/isolation & purification Solid Phase Microextraction Vitis/*chemistry Volatile Organic Compounds/chemistry/*isolation & purification Spme breeding; |
Notes: | "MedlineBurzynski-Chang, Elizabeth A Ryona, Imelda Reisch, Bruce I Gonda, Itay Foolad, Majid R Giovannoni, James J Sacks, Gavin L eng 2011-51181-30635/National Institute of Food and Agriculture/ 2017-51181-26829/National Institute of Food and Agriculture/ Switzerland 2018/09/27 Molecules. 2018 Sep 23; 23(10):2436. doi: 10.3390/molecules23102436" |