Title: | Development of a cyclic system for chemiluminescence detection |
Address: | "School of Chemistry and Chemical Engineering, Sun Yat-sen University , Guangzhou 510275, China" |
ISSN/ISBN: | 1520-6882 (Electronic) 0003-2700 (Linking) |
Abstract: | "In this paper, we described a new concept of cyclic chemiluminescence (CCL) detection, and a homemade system was designed to realize such detection. The direction of the carrier in the CCL system is in a state of periodical change that can trigger a succession of chemiluminescence (CL) reactions in a single sample injection. Therefore, in contrast to the traditional CL detection, which only records a single signal, CCL allows us to obtain multistage signals. To evaluate the new method, the cataluminescence (CTL) reaction of the volatile organic compounds (VOCs) on a nanosized catalyst was selected as the analytical model. We found that each CCL reaction has a unique exponential decay equation (EDE) to describe the change law of its multistage signals. Further study showed that the initial amount (A) of the EDE is linear with the analyte concentration, while the decay coefficient (k) is a characteristic constant for a given reaction. The formation mechanism of the exponential function and the determinants of the decay coefficient were discussed in detail. As a distinct application, CCL is capable of rapidly discriminating various analytes and even structural isomers" |
Notes: | "PubMed-not-MEDLINEZhang, Runkun Hu, Yufei Li, Gongke eng 2014/05/31 Anal Chem. 2014 Jun 17; 86(12):6080-7. doi: 10.1021/ac5012359. Epub 2014 May 29" |