Title: | Molecular Dissection of Early Defense Signaling Underlying Volatile-Mediated Defense Regulation and Herbivore Resistance in Rice |
Author(s): | Ye M; Glauser G; Lou Y; Erb M; Hu L; |
Address: | "Institute of Plant Sciences, University of Bern, Bern 3013, Switzerland. Neuchatel Platform of Analytical Chemistry, University of Neuchatel, Neuchatel 2009, Switzerland. State Key Laboratory of Rice Biology, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China. Institute of Plant Sciences, University of Bern, Bern 3013, Switzerland lingfei.hu@ips.unibe.ch matthias.erb@ips.unibe.ch" |
ISSN/ISBN: | 1532-298X (Electronic) 1040-4651 (Print) 1040-4651 (Linking) |
Abstract: | "Herbivore-induced plant volatiles prime plant defenses and resistance, but how they are integrated into early defense signaling and whether a causal relationship exists between volatile defense priming and herbivore resistance is unclear. Here, we investigated the impact of indole, a common herbivore-induced plant volatile and modulator of many physiological processes in plants, bacteria, and animals, on early defense signaling and herbivore resistance in rice (Oryza sativa). Rice plants infested by fall armyworm (Spodoptera frugiperda) caterpillars release indole at a rate of up to 25 ng*h(-1) Exposure to equal doses of exogenous indole enhances rice resistance to S. frugiperda Screening of early signaling components revealed that indole pre-exposure directly enhances the expression of the leucine-rich repeat-receptor-like kinase OsLRR-RLK1 Pre-exposure to indole followed by simulated herbivory increases (i.e. primes) the transcription, accumulation, and activation of the mitogen-activated protein kinase OsMPK3 and the expression of the downstream WRKY transcription factor gene OsWRKY70 as well as several jasmonate biosynthesis genes, resulting in higher jasmonic acid (JA) accumulation. Analysis of transgenic plants defective in early signaling showed that OsMPK3 is required and that OsMPK6 and OsWRKY70 contribute to indole-mediated defense priming of JA-dependent herbivore resistance. Therefore, herbivore-induced plant volatiles increase plant resistance to herbivores by positively regulating early defense signaling components" |
Keywords: | "Animals Cyclopentanes/metabolism *Disease Resistance Gene Expression Regulation, Plant Herbivory Indoles/*metabolism/pharmacology Mitogen-Activated Protein Kinases/genetics/metabolism Oryza/*genetics/immunology/parasitology/physiology Oxylipins/metabolism;" |
Notes: | "MedlineYe, Meng Glauser, Gaetan Lou, Yonggen Erb, Matthias Hu, Lingfei eng Research Support, Non-U.S. Gov't England 2019/02/15 Plant Cell. 2019 Mar; 31(3):687-698. doi: 10.1105/tpc.18.00569. Epub 2019 Feb 13" |